Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 108, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158941

RESUMO

BACKGROUND: Genetic variation in regulatory sequences that alter transcription factor (TF) binding is a major cause of phenotypic diversity. Brassinosteroid is a growth hormone that has major effects on plant phenotypes. Genetic variation in brassinosteroid-responsive cis-elements likely contributes to trait variation. Pinpointing such regulatory variations and quantitative genomic analysis of the variation in TF-target binding, however, remains challenging. How variation in transcriptional targets of signaling pathways such as the brassinosteroid pathway contributes to phenotypic variation is an important question to be investigated with innovative approaches. RESULTS: Here, we use a hybrid allele-specific chromatin binding sequencing (HASCh-seq) approach and identify variations in target binding of the brassinosteroid-responsive TF ZmBZR1 in maize. HASCh-seq in the B73xMo17 F1s identifies thousands of target genes of ZmBZR1. Allele-specific ZmBZR1 binding (ASB) has been observed for 18.3% of target genes and is enriched in promoter and enhancer regions. About a quarter of the ASB sites correlate with sequence variation in BZR1-binding motifs and another quarter correlate with haplotype-specific DNA methylation, suggesting that both genetic and epigenetic variations contribute to the high level of variation in ZmBZR1 occupancy. Comparison with GWAS data shows linkage of hundreds of ASB loci to important yield and disease-related traits. CONCLUSION: Our study provides a robust method for analyzing genome-wide variations of TF occupancy and identifies genetic and epigenetic variations of the brassinosteroid response transcription network in maize.


Assuntos
Brassinosteroides , Zea mays , Zea mays/genética , Alelos , Sequenciamento de Cromatina por Imunoprecipitação , Fenótipo , Fatores de Transcrição/genética
2.
Science ; 382(6674): eadg8940, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033071

RESUMO

The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.


Assuntos
Produtos Agrícolas , Domesticação , Hibridização Genética , Zea mays , México , Fenótipo , Zea mays/genética , Variação Genética , Produtos Agrícolas/genética
3.
Genome Biol Evol ; 14(12)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36510772

RESUMO

Domestication in the cotton genus is remarkable in that it has occurred independently four different times at two different ploidy levels. Relatively little is known about genome evolution and domestication in the cultivated diploid species Gossypium herbaceum and Gossypium arboreum, due to the absence of wild representatives for the latter species, their ancient domestication, and their joint history of human-mediated dispersal and interspecific gene flow. Using in-depth resequencing of a broad sampling from both species, we provide support for their independent domestication, as opposed to a progenitor-derivative relationship, showing that diversity (mean π = 6 × 10-3) within species is similar, and that divergence between species is modest (FST = 0.413). Individual accessions were homozygous for ancestral single-nucleotide polymorphisms at over half of variable sites, while fixed, derived sites were at modest frequencies. Notably, two chromosomes with a paucity of fixed, derived sites (i.e., chromosomes 7 and 10) were also strongly implicated as having experienced high levels of introgression. Collectively, these data demonstrate variable permeability to introgression among chromosomes, which we propose is due to divergent selection under domestication and/or the phenomenon of F2 breakdown in interspecific crosses. Our analyses provide insight into the evolutionary forces that shape diversity and divergence in the diploid cultivated species and establish a foundation for understanding the contribution of introgression and/or strong parallel selection to the extensive morphological similarities shared between species.


Assuntos
Diploide , Gossypium , Domesticação , Genoma de Planta , Gossypium/genética , Ploidias
4.
Science ; 373(6555): 655-662, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34353948

RESUMO

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Zea mays/genética , Centrômero/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Metilação de DNA , Resistência à Doença/genética , Genes de Plantas , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Herança Multifatorial/genética , Fenótipo , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Sequências Reguladoras de Ácido Nucleico , Análise de Sequência de DNA , Tetraploidia , Transcriptoma , Sequenciamento Completo do Genoma
5.
Nat Commun ; 11(1): 2288, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385271

RESUMO

Improvements in long-read data and scaffolding technologies have enabled rapid generation of reference-quality assemblies for complex genomes. Still, an assessment of critical sequence depth and read length is important for allocating limited resources. To this end, we have generated eight assemblies for the complex genome of the maize inbred line NC358 using PacBio datasets ranging from 20 to 75 × genomic depth and with N50 subread lengths of 11-21 kb. Assemblies with ≤30 × depth and N50 subread length of 11 kb are highly fragmented, with even low-copy genic regions showing degradation at 20 × depth. Distinct sequence-quality thresholds are observed for complete assembly of genes, transposable elements, and highly repetitive genomic features such as telomeres, heterochromatic knobs, and centromeres. In addition, we show high-quality optical maps can dramatically improve contiguity in even our most fragmented base assembly. This study provides a useful resource allocation reference to the community as long-read technologies continue to mature.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Endogamia , Zea mays/genética , Sequência de Bases , Elementos de DNA Transponíveis/genética , Genoma de Planta , Sequências Repetitivas de Ácido Nucleico/genética
6.
Curr Biol ; 28(14): R786-R788, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30040938

RESUMO

Study of domestication is complex but essential to our understanding of evolutionary processes and for crop breeding. A new study analyzes genomic data from 163 lines of domesticated African rice and 83 lines of its wild relative, clarifying the history of African rice domestication.


Assuntos
Domesticação , Oryza/genética , Produtos Agrícolas/genética , Genoma de Planta , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA