Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 600(13): 3193-3210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35587817

RESUMO

Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real-time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days' gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg-1  h-1 ) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from -24 to 72 h post-UCO and analysed for percentage change of hydroxyl radicals (• OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post-mortem 72 h post-UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral • OH outflow 0 to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia ( PO2${P_{{{\rm{O}}_{\rm{2}}}}}$ and SO2${S_{{{\rm{O}}_{\rm{2}}}}}$ ) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and • OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of • OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia. KEY POINTS: Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine-monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days' gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post-UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and • OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.


Assuntos
Creatina , Hipóxia Fetal , Animais , Creatina/metabolismo , Creatina/farmacologia , Suplementos Nutricionais , Feminino , Hipóxia Fetal/metabolismo , Feto/metabolismo , Glicerol/metabolismo , Humanos , Hipóxia/metabolismo , Lactatos , Estresse Oxidativo , Gravidez , Piruvatos/metabolismo , Ovinos , Cordão Umbilical/fisiologia
2.
Int J Mol Sci ; 21(3)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991880

RESUMO

Creatine is a metabolite important for cellular energy homeostasis as it provides spatio-temporal adenosine triphosphate (ATP) buffering for cells with fluctuating energy demands. Here, we examined whether placental creatine metabolism was altered in cases of early-onset pre-eclampsia (PE), a condition known to cause placental metabolic dysfunction. We studied third trimester human placentae collected between 27-40 weeks' gestation from women with early-onset PE (n = 20) and gestation-matched normotensive control pregnancies (n = 20). Placental total creatine and creatine precursor guanidinoacetate (GAA) content were measured. mRNA expression of the creatine synthesizing enzymes arginine:glycine aminotransferase (GATM) and guanidinoacetate methyltransferase (GAMT), the creatine transporter (SLC6A8), and the creatine kinases (mitochondrial CKMT1A & cytosolic BBCK) was assessed. Placental protein levels of arginine:glycine aminotransferase (AGAT), GAMT, CKMT1A and BBCK were also determined. Key findings; total creatine content of PE placentae was 38% higher than controls (p < 0.01). mRNA expression of GATM (p < 0.001), GAMT (p < 0.001), SLC6A8 (p = 0.021) and BBCK (p < 0.001) was also elevated in PE placentae. No differences in GAA content, nor protein levels of AGAT, GAMT, BBCK or CKMT1A were observed between cohorts. Advancing gestation and birth weight were associated with a down-regulation in placental GATM mRNA expression, and a reduction in GAA content, in control placentae. These relationships were absent in PE cases. Our results suggest PE placentae may have an ongoing reliance on the creatine kinase circuit for maintenance of cellular energetics with increased total creatine content and transcriptional changes to creatine synthesizing enzymes and the creatine transporter. Understanding the functional consequences of these changes warrants further investigation.


Assuntos
Creatina/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteínas da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo , Feminino , Humanos , Placenta/patologia , Pré-Eclâmpsia/patologia , Gravidez
3.
Mol Hum Reprod ; 25(8): 495-505, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323678

RESUMO

Creatine is a metabolite involved in cellular energy homeostasis. In this study, we examined placental creatine content, and expression of the enzymes required for creatine synthesis, transport and the creatine kinase reaction, in pregnancies complicated by low birthweight. We studied first trimester chorionic villus biopsies (CVBs) of small for gestational age (SGA) and appropriately grown infants (AGA), along with third trimester placental samples from fetal growth restricted (FGR) and healthy gestation-matched controls. Placental creatine and creatine precursor (guanidinoacetate-GAA) levels were measured. Maternal and cord serum from control and FGR pregnancies were also analyzed for creatine concentration. mRNA expression of the creatine transporter (SLC6A8); synthesizing enzymes arginine:glycine aminotransferase (GATM) and guanidinoacetate methyltransferase (GAMT); mitochondrial (mtCK) and cytosolic (BBCK) creatine kinases; and amino acid transporters (SLC7A1 & SLC7A2) was assessed in both CVBs and placental samples. Protein levels of AGAT (arginine:glycine aminotransferase), GAMT, mtCK and BBCK were also measured in placental samples. Key findings; total creatine content of the third trimester FGR placentae was 43% higher than controls. The increased creatine content of placental tissue was not reflected in maternal or fetal serum from FGR pregnancies. Tissue concentrations of GAA were lower in the third trimester FGR placentae compared to controls, with lower GATM and GAMT mRNA expression also observed. No differences in the mRNA expression of GATM, GAMT or SLC6A8 were observed between CVBs from SGA and AGA pregnancies. These results suggest placental creatine metabolism in FGR pregnancies is altered in late gestation. The relevance of these changes on placental bioenergetics should be the focus of future investigations.


Assuntos
Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/metabolismo , Placenta/metabolismo , Placenta/fisiopatologia , Adulto , Feminino , Desenvolvimento Fetal/genética , Desenvolvimento Fetal/fisiologia , Guanidinoacetato N-Metiltransferase/genética , Humanos , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , Terceiro Trimestre da Gravidez/metabolismo , RNA Mensageiro/metabolismo
4.
Pediatr Res ; 81(4): 646-653, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27997529

RESUMO

BACKGROUND: Acute kidney injury affects ~70% of asphyxiated newborns, and increases their risk of developing chronic kidney disease later in life. Acute kidney injury is driven by renal oxygen deprivation during asphyxia, thus we hypothesized that creatine administered antenatally would protect the kidney from the long-term effects of birth asphyxia. METHODS: Pregnant spiny mice were fed standard chow or chow supplemented with 5% creatine from 20-d gestation (midgestation). One day prior to term (37-d gestation), pups were delivered by caesarean or subjected to intrauterine asphyxia. Litters were allocated to one of two time-points. Kidneys were collected at 1 mo of age to estimate nephron number (stereology). Renal function (excretory profile and glomerular filtration rate) was measured at 3 mo of age, and kidneys then collected for assessment of glomerulosclerosis. RESULTS: Compared with controls, at 1 mo of age male (but not female) birth-asphyxia offspring had 20% fewer nephrons (P < 0.05). At 3 mo of age male birth-asphyxia offspring had 31% lower glomerular filtration rate (P < 0.05) and greater glomerular collagen IV content (P < 0.01). Antenatal creatine prevented these renal injuries arising from birth asphyxia. CONCLUSION: Maternal creatine supplementation during pregnancy may be an effective prophylactic to prevent birth asphyxia induced acute kidney injury and the emergence of chronic kidney disease.


Assuntos
Injúria Renal Aguda/prevenção & controle , Asfixia Neonatal/fisiopatologia , Creatina/uso terapêutico , Rim/fisiopatologia , Fenômenos Fisiológicos da Nutrição Materna , Injúria Renal Aguda/fisiopatologia , Animais , Animais Recém-Nascidos , Colágeno Tipo IV/metabolismo , Creatina/administração & dosagem , Suplementos Nutricionais , Feminino , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/prevenção & controle , Glomérulos Renais/fisiopatologia , Masculino , Camundongos , Néfrons/fisiopatologia , Tamanho do Órgão , Oxigênio/metabolismo , Gravidez , Prenhez
5.
Amino Acids ; 48(8): 1819-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26695944

RESUMO

Recent evidence obtained from a rodent model of birth asphyxia shows that supplementation of the maternal diet with creatine during pregnancy protects the neonate from multi-organ damage. However, the effect of increasing creatine intake on creatine homeostasis and biosynthesis in females, particularly during pregnancy, is unknown. This study assessed the impact of creatine supplementation on creatine homeostasis, body composition, capacity for de novo creatine synthesis and renal excretory function in non-pregnant and pregnant spiny mice. Mid-gestation pregnant and virgin spiny mice were fed normal chow or chow supplemented with 5 % w/w creatine for 18 days. Weight gain, urinary creatine and electrolyte excretion were assessed during supplementation. At post mortem, body composition was assessed by Dual-energy X-ray absorptiometry, or tissues were collected to assess creatine content and mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) and the creatine transporter (CrT1). Protein expression of AGAT and GAMT was also assessed by Western blot. Key findings of this study include no changes in body weight or composition with creatine supplementation; increased urinary creatine excretion in supplemented spiny mice, with increased sodium (P < 0.001) and chloride (P < 0.05) excretion in pregnant dams after 3 days of supplementation; lowered renal AGAT mRNA (P < 0.001) and protein (P < 0.001) expressions, and lowered CrT1 mRNA expression in the kidney (P < 0.01) and brain (P < 0.001). Creatine supplementation had minimal impact on creatine homeostasis in either non-pregnant or pregnant spiny mice. Increasing maternal dietary creatine consumption could be a useful treatment for birth asphyxia.


Assuntos
Creatina , Suplementos Nutricionais , Homeostase/efeitos dos fármacos , Rim/metabolismo , Amidinotransferases/biossíntese , Animais , Creatina/farmacocinética , Creatina/farmacologia , Feminino , Guanidinoacetato N-Metiltransferase/biossíntese , Homeostase/fisiologia , Testes de Função Renal , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Gravidez
6.
Pediatr Res ; 80(6): 852-860, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27466898

RESUMO

BACKGROUND: Maternal antenatal creatine supplementation protects the brain, kidney, and diaphragm against the effects of birth asphyxia in the spiny mouse. In this study, we examined creatine's potential to prevent damage to axial skeletal muscles. METHODS: Pregnant spiny mice were fed a control or creatine-supplemented diet from mid-pregnancy, and 1 d before term (39 d), fetuses were delivered by c-section with or without 7.5 min of birth asphyxia. At 24 h or 33 ± 2 d after birth, gastrocnemius muscles were obtained for ex-vivo study of twitch-tension, muscle fatigue, and structural and histochemical analysis. RESULTS: Birth asphyxia significantly reduced cross-sectional area of all muscle fiber types (P < 0.05), and increased fatigue caused by repeated tetanic contractions at 24 h of age (P < 0.05). There were fewer (P < 0.05) Type I and IIa fibers and more (P < 0.05) Type IIb fibers in male gastrocnemius at 33 d of age. Muscle oxidative capacity was reduced (P < 0.05) in males at 24 h and 33 d and in females at 24 h only. Maternal creatine treatment prevented all asphyxia-induced changes in the gastrocnemius, improved motor performance. CONCLUSION: This study demonstrates that creatine loading before birth protects the muscle from asphyxia-induced damage at birth.


Assuntos
Asfixia Neonatal/prevenção & controle , Creatina/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Asfixia Neonatal/patologia , Asfixia Neonatal/fisiopatologia , Creatina/metabolismo , Modelos Animais de Doenças , Feminino , Membro Posterior , Masculino , Murinae , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Oxirredução , Gravidez
7.
Biochim Biophys Acta ; 1840(4): 1276-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24291686

RESUMO

BACKGROUND: Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. SCOPE OF REVIEW: This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. MAJOR CONCLUSIONS: Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. GENERAL SIGNIFICANCE: This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research.


Assuntos
Exercício Físico/fisiologia , Saúde , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Doenças Musculares/etiologia , Adulto , Animais , Humanos , MicroRNAs/fisiologia , Doenças Mitocondriais/terapia , Mitofagia/fisiologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/terapia
8.
Biochim Biophys Acta ; 1843(12): 2937-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25173818

RESUMO

Intramuscular creatine plays a crucial role in maintaining skeletal muscle energy homeostasis, and its entry into the cell is dependent upon the sodium chloride dependent Creatine Transporter (CrT; Slc6a8). CrT activity is regulated by a number of factors including extra- and intracellular creatine concentrations, hormones, changes in sodium concentration, and kinase activity, however very little is known about the regulation of CrT gene expression. The present study aimed to investigate how Creatine Transporter (CrT) gene expression is regulated in skeletal muscle. Within the first intron of the CrT gene, we identified a conserved sequence that includes the motif recognized by the Estrogen-related receptor α (ERRα), also known as an Estrogen-related receptor response element (ERRE). Additional ERREs confirming to the known consensus sequence were also identified in the region upstream of the promoter. When partnered with peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1α) or beta (PGC-1ß), ERRα induces the expression of many genes important for cellular bioenergetics. We therefore hypothesized that PGC-1 and ERRα could also regulate CrT gene expression and creatine uptake in skeletal muscle. Here we show that adenoviral overexpression of PGC-1α or PGC-1ß in L6 myotubes increased CrT mRNA (2.1 and 1.7-fold, P<0.0125) and creatine uptake (1.8 and 1.6-fold, P<0.0125), and this effect was inhibited with co-expression of shRNA for ERRα. Overexpression of a constitutively active ERRα (VP16-ERRα) increased CrT mRNA approximately 8-fold (P<0.05), resulting in a 2.2-fold (P<0.05) increase in creatine uptake. Lastly, chromatin immunoprecipitation assays revealed that PGC-1α and ERRα directly interact with the CrT gene and increase CrT gene expression.

9.
BMC Pregnancy Childbirth ; 15: 92, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25885219

RESUMO

BACKGROUND: Pregnancy induces adaptations in maternal metabolism to meet the increased need for nutrients by the placenta and fetus. Creatine is an important intracellular metabolite obtained from the diet and also synthesised endogenously. Experimental evidence suggests that the fetus relies on a maternal supply of creatine for much of gestation. However, the impact of pregnancy on maternal creatine homeostasis is unclear. We hypothesise that alteration of maternal creatine homeostasis occurs during pregnancy to ensure adequate levels of this essential substrate are available for maternal tissues, the placenta and fetus. This study aimed to describe maternal creatine homeostasis from mid to late gestation in the precocial spiny mouse. METHODS: Plasma creatine concentration and urinary excretion were measured from mid to late gestation in pregnant (n = 8) and age-matched virgin female spiny mice (n = 6). At term, body composition and organ weights were assessed and tissue total creatine content determined. mRNA expression of the creatine synthesising enzymes arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), and the creatine transporter (CrT1) were assessed by RT-qPCR. Protein expression of AGAT and GAMT was also assessed by western blot analysis. RESULTS: Plasma creatine and renal creatine excretion decreased significantly from mid to late gestation (P < 0.001, P < 0.05, respectively). Pregnancy resulted in increased lean tissue (P < 0.01), kidney (P < 0.01), liver (P < 0.01) and heart (P < 0.05) mass at term. CrT1 expression was increased in the heart (P < 0.05) and skeletal muscle (P < 0.05) at term compared to non-pregnant tissues, and creatine content of the heart (P < 0.05) and kidney (P < 0.001) were also increased at this time. CrT1 mRNA expression was down-regulated in the liver (<0.01) and brain (<0.01) of pregnant spiny mice at term. Renal AGAT mRNA (P < 0.01) and protein (P < 0.05) expression were both significantly up-regulated at term, with decreased expression of AGAT mRNA (<0.01) and GAMT protein (<0.05) observed in the term pregnant heart. Brain AGAT (<0.01) and GAMT (<0.001) mRNA expression were also decreased at term. CONCLUSION: Change of maternal creatine status (increased creatine synthesis and reduced creatine excretion) may be a necessary adjustment of maternal physiology to pregnancy to meet the metabolic demands of maternal tissues, the placenta and developing fetus.


Assuntos
Amidinotransferases/genética , Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/genética , Homeostase/genética , Proteínas de Membrana Transportadoras/genética , Gravidez/metabolismo , RNA Mensageiro/metabolismo , Amidinotransferases/metabolismo , Animais , Western Blotting , Feminino , Regulação da Expressão Gênica , Guanidinoacetato N-Metiltransferase/metabolismo , Murinae , Gravidez/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Proc Natl Acad Sci U S A ; 109(17): 6739-44, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493257

RESUMO

The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown. Here we demonstrate that KLF15 is essential for skeletal muscle lipid utilization and physiologic performance. KLF15 directly regulates a broad transcriptional program spanning all major segments of the lipid-flux pathway in muscle. Consequently, Klf15-deficient mice have abnormal lipid and energy flux, excessive reliance on carbohydrate fuels, exaggerated muscle fatigue, and impaired endurance exercise capacity. Elucidation of this heretofore unrecognized role for KLF15 now implicates this factor as a central component of the transcriptional circuitry that coordinates physiologic flux of all three basic cellular nutrients: glucose, amino acids, and lipids.


Assuntos
Exercício Físico , Fatores de Transcrição Kruppel-Like/fisiologia , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Proteínas Nucleares/fisiologia , Aminoácidos/metabolismo , Glucose/metabolismo , Homeostase , Humanos
11.
Biochim Biophys Acta ; 1833(12): 3112-3123, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24008097

RESUMO

The stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes. Here, we show that Ndrg2 is a target of a peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and estrogen-related receptor alpha (ERRα) transcriptional program and is induced in response to endurance exercise, a physiological stress known also to increase PGC-1α/ERRα activity. Analyses of global gene and protein expression profiles in C2C12 myotubes with reduced levels of NDRG2, suggest that NDRG2 affects muscle growth, contractile properties, MAPK signaling, ion and vesicle transport and oxidative phosphorylation. Indeed, suppression of NDRG2 in myotubes increased protein synthesis and the expression of fast glycolytic myosin heavy chain isoforms, while reducing the expression of embryonic myosin Myh3, other contractile-associated genes and the MAPK p90 RSK1. Conversely, enhanced expression of NDRG2 reduced protein synthesis, and furthermore, partially blocked the increased protein synthesis rates elicited by a constitutively active form of ERRα. In contrast, suppressing or increasing levels of NDRG2 did not affect mRNA expression of genes involved in mitochondrial biogenesis that are regulated by PGC-1α or ERRα. This study shows that in C2C12 myotubes Ndrg2 is a novel PGC-1α/ERRα transcriptional target, which influences protein turnover and the regulation of genes involved in muscle contraction and function.


Assuntos
Regulação da Expressão Gênica , Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Biossíntese de Proteínas/genética , Proteínas/genética , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular , Exercício Físico , Ontologia Genética , Genômica , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Renovação Mitocondrial/genética , Modelos Biológicos , Músculo Esquelético/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Resistência Física , Proteínas/metabolismo , Proteômica , Proteínas Supressoras de Tumor/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
12.
Am J Clin Nutr ; 119(3): 838-849, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432717

RESUMO

BACKGROUND: Physiological adaptations during pregnancy alter nutrient and energy metabolism. Creatine may be important for maintaining cellular energy homeostasis throughout pregnancy. However, the impact of pregnancy on endogenous and exogenous creatine availability has never been comprehensively explored. OBJECTIVES: To undertake a prospective cohort study and determine the physiological ranges of creatine and associated metabolites throughout human pregnancy. METHODS: Females with a singleton low-risk pregnancy were recruited at an Australian health service. Maternal blood and urine were collected at 5-time points from 10-36 weeks of gestation, and cord blood and placental samples were collected at birth. Creatine and associated amino acids and metabolites of creatine synthesis were analyzed. Dietary data were captured to determine effects of exogenous creatine intake. Associations between creatine metabolism and neonatal growth parameters were examined. RESULTS: Two hundred and eighty-two females were included. Maternal plasma creatine remained stable throughout pregnancy [ß: -0.003 µM; 95% confidence interval (CI): -0.07, 0.07; P = 0.94], though urinary creatine declined in late gestation (ß: 0.38 µM/mmol/L creatinine (CRN); 95% CI: -0.47, -0.29; P < 0.0001). Plasma guanidinoacetate (GAA; the precursor to creatine during endogenous synthesis) fell from 10-29 weeks of gestation before rising until birth (ß: -0.38 µM/mmol/L CRN; 95% CI: -0.47, -0.29; P < 0.0001). Urinary GAA followed an opposing pattern (ß: 2.52 µM/mmol/L CRN; 95% CI: 1.47, 3.58, P < 0.001). Animal protein intake was positively correlated with maternal plasma creatine until ∼32 weeks of gestation (ß: 0.07-0.18 µM; 95% CI: 0.006, 0.25; P ≤ 0.001). There were no links between creatine and neonatal growth, but increased urinary GAA in early pregnancy was associated with a slight reduction in head circumference at birth (ß: -0.01 cm; 95% CI: -0.02, -0.004; P = 0.003). CONCLUSIONS: Although maternal plasma creatine concentrations were highly conserved, creatine metabolism appears to adjust throughout pregnancy. An ability to maintain creatine concentrations through diet and shifts in endogenous synthesis may impact fetal growth. This trial was registered at [registry name] as ACTRN12618001558213.


Assuntos
Creatina , Placenta , Animais , Recém-Nascido , Feminino , Humanos , Gravidez , Estudos Prospectivos , Austrália , Homeostase , Creatinina
13.
J Physiol ; 591(18): 4637-53, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23798494

RESUMO

The identification of microRNAs (miRNAs) has established new mechanisms that control skeletal muscle adaptation to exercise. The present study investigated the mRNA regulation of components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin-5), muscle enriched miRNAs, (miR-1, -133a, -133b and -206), and several miRNAs dysregulated in muscle myopathies (miR-9, -23, -29, -31 and -181). Measurements were made in muscle biopsies from nine healthy untrained males at rest, 3 h following an acute bout of moderate-intensity endurance cycling and following 10 days of endurance training. Bioinformatics analysis was used to predict potential miRNA targets. In the 3 h period following the acute exercise bout, Drosha, Dicer and Exportin-5, as well as miR-1, -133a, -133-b and -181a were all increased. In contrast miR-9, -23a, -23b and -31 were decreased. Short-term training increased miR-1 and -29b, while miR-31 remained decreased. Negative correlations were observed between miR-9 and HDAC4 protein (r=-0.71; P=0.04), miR-31 and HDAC4 protein (r=-0.87; P=0.026) and miR-31 and NRF1 protein (r=-0.77; P=0.01) 3 h following exercise. miR-31 binding to the HDAC4 and NRF1 3 untranslated region (UTR) reduced luciferase reporter activity. Exercise rapidly and transiently regulates several miRNA species in muscle. Several of these miRNAs may be involved in the regulation of skeletal muscle regeneration, gene transcription and mitochondrial biogenesis. Identifying endurance exercise-mediated stress signals regulating skeletal muscle miRNAs, as well as validating their targets and regulatory pathways post exercise, will advance our understanding of their potential role/s in human health.


Assuntos
Exercício Físico , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Resistência Física , Adulto , Biologia Computacional , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Masculino , MicroRNAs/genética , Músculo Esquelético/fisiologia , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
14.
Front Cell Neurosci ; 17: 1154772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066075

RESUMO

Background: Creatine supplementation during pregnancy is a promising prophylactic treatment for perinatal hypoxic brain injury. Previously, in near-term sheep we have shown that fetal creatine supplementation reduces cerebral metabolic and oxidative stress induced by acute global hypoxia. This study investigated the effects of acute hypoxia with or without fetal creatine supplementation on neuropathology in multiple brain regions. Methods: Near-term fetal sheep were administered continuous intravenous infusion of either creatine (6 mg kg-1 h-1) or isovolumetric saline from 122 to 134 days gestational age (dGA; term is approx. 145 dGA). At 131 dGA, global hypoxia was induced by a 10 min umbilical cord occlusion (UCO). Fetuses were then recovered for 72 h at which time (134 dGA) cerebral tissue was collected for either RT-qPCR or immunohistochemistry analyses. Results: UCO resulted in mild injury to the cortical gray matter, thalamus and hippocampus, with increased cell death and astrogliosis and downregulation of genes involved in regulating injury responses, vasculature development and mitochondrial integrity. Creatine supplementation reduced astrogliosis within the corpus callosum but did not ameliorate any other gene expression or histopathological changes induced by hypoxia. Of importance, effects of creatine supplementation on gene expression irrespective of hypoxia, including increased expression of anti-apoptotic (BCL-2) and pro-inflammatory (e.g., MPO, TNFa, IL-6, IL-1ß) genes, particularly in the gray matter, hippocampus, and striatum were identified. Creatine treatment also effected oligodendrocyte maturation and myelination in white matter regions. Conclusion: While supplementation did not rescue mild neuropathology caused by UCO, creatine did result in gene expression changes that may influence in utero cerebral development.

15.
Oxid Med Cell Longev ; 2022: 3255296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132347

RESUMO

Near-term acute hypoxia in utero can result in significant fetal brain injury, with some brain regions more vulnerable than others. As mitochondrial dysfunction is an underlying feature of the injury cascade following hypoxia, this study is aimed at characterizing mitochondrial function at a region-specific level in the near-term fetal brain after a period of acute hypoxia. We hypothesized that regional differences in mitochondrial function would be evident, and that prophylactic creatine treatment would mitigate mitochondrial dysfunction following hypoxia; thereby reducing fetal brain injury. Pregnant Border-Leicester/Merino ewes with singleton fetuses were surgically instrumented at 118 days of gestation (dGa; term is ~145 dGA). A continuous infusion of either creatine (n = 15; 6 mg/kg/h) or isovolumetric saline (n = 16; 1.5 ml/kg/h) was administered to the fetuses from 121 dGa. After 10 days of infusion, a subset of fetuses (8 saline-, 7 creatine-treated) were subjected to 10 minutes of umbilical cord occlusion (UCO) to induce a mild global fetal hypoxia. At 72 hours after UCO, the fetal brain was collected for high-resolution mitochondrial respirometry and molecular and histological analyses. The results show that the transient UCO-induced acute hypoxia impaired mitochondrial function in the hippocampus and the periventricular white matter and increased the incidence of cell death in the hippocampus. Creatine treatment did not rectify the changes in mitochondrial respiration associated with hypoxia, but there was a negative relationship between cell death and creatine content following treatment. Irrespective of UCO, creatine increased the proportion of cytochrome c bound to the inner mitochondrial membrane, upregulated the mRNA expression of the antiapoptotic gene Bcl2, and of PCG1-α, a driver of mitogenesis, in the hippocampus. We conclude that creatine treatment prior to brief, acute hypoxia does not fundamentally modify mitochondrial respiratory function, but may improve mitochondrial structural integrity and potentially increase mitogenesis and activity of antiapoptotic pathways.


Assuntos
Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Creatina/administração & dosagem , Hipóxia Fetal/complicações , Feto/metabolismo , Idade Gestacional , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Modelos Animais de Doenças , Feminino , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ovinos , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
16.
J Physiol ; 589(Pt 8): 2027-39, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21486805

RESUMO

The striated muscle activator of Rho signalling (STARS) is an actin-binding protein specifically expressed in cardiac, skeletal and smooth muscle. STARS has been suggested to provide an important link between the transduction of external stress signals to intracellular signalling pathways controlling genes involved in the maintenance of muscle function. The aims of this study were firstly, to establish if STARS, as well as members of its downstream signalling pathway, are upregulated following acute endurance cycling exercise; and secondly, to determine if STARS is a transcriptional target of peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) and oestrogen-related receptor-α (ERRα). When measured 3 h post-exercise, STARS mRNA and protein levels as well as MRTF-A and serum response factor (SRF) nuclear protein content, were significantly increased by 140, 40, 40 and 40%, respectively. Known SRF target genes, carnitine palmitoyltransferase-1ß (CPT-1ß) and jun B proto-oncogene (JUNB), as well as the exercise-responsive genes PGC-1α mRNA and ERRα were increased by 2.3-, 1.8-, 4.5- and 2.7-fold, 3 h post-exercise. Infection of C2C12 myotubes with an adenovirus-expressing human PGC-1α resulted in a 3-fold increase in Stars mRNA, a response that was abolished following the suppression of endogenous ERRα. Over-expression of PGC-1α also increased Cpt-1ß, Cox4 and Vegf mRNA by 6.2-, 2.0- and 2.0-fold, respectively. Suppression of endogenous STARS reduced basal Cpt-1ß levels by 8.2-fold and inhibited the PGC-1α-induced increase in Cpt-1ß mRNA. Our results show for the first time that the STARS signalling pathway is upregulated in response to acute endurance exercise. Additionally, we show in C2C12 myotubes that the STARS gene is a PGC-1α/ERRα transcriptional target. Furthermore, our results suggest a novel role of STARS in the co-ordination of PGC-1α-induced upregulation of the fat oxidative gene, CPT-1ß.


Assuntos
Metabolismo Energético , Proteínas de Choque Térmico/metabolismo , Proteínas dos Microfilamentos/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Resistência Física , Receptores de Estrogênio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Adulto , Análise de Variância , Animais , Ciclismo , Sítios de Ligação , Biópsia , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-jun/genética , Interferência de RNA , RNA Mensageiro/metabolismo , Receptores de Estrogênio/genética , Fator de Resposta Sérica/genética , Fatores de Tempo , Transativadores , Fatores de Transcrição/genética , Transfecção , Regulação para Cima , Adulto Jovem , Receptor ERRalfa Relacionado ao Estrogênio
17.
Cells ; 10(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34831126

RESUMO

There is an important unmet need to develop interventions that improve outcomes of hypoxic-ischaemic encephalopathy (HIE). Creatine has emerged as a promising neuroprotective agent. Our objective was to systematically evaluate the preclinical animal studies that used creatine for perinatal neuroprotection, and to identify knowledge gaps that need to be addressed before creatine can be considered for pragmatic clinical trials for HIE. METHODS: We reviewed preclinical studies up to 20 September 2021 using PubMed, EMBASE and OVID MEDLINE databases. The SYRCLE risk of bias assessment tool was utilized. RESULTS: Seventeen studies were identified. Dietary creatine was the most common administration route. Cerebral creatine loading was age-dependent with near term/term-equivalent studies reporting higher increases in creatine/phosphocreatine compared to adolescent-adult equivalent studies. Most studies did not control for sex, study long-term histological and functional outcomes, or test creatine post-HI. None of the perinatal studies that suggested benefit directly controlled core body temperature (a known confounder) and many did not clearly state controlling for potential study bias. CONCLUSION: Creatine is a promising neuroprotective intervention for HIE. However, this systematic review reveals key knowledge gaps and improvements to preclinical studies that must be addressed before creatine can be trailed for neuroprotection of the human fetus/neonate.


Assuntos
Envelhecimento/patologia , Creatina/farmacologia , Suplementos Nutricionais , Hipóxia-Isquemia Encefálica/patologia , Neuroproteção/efeitos dos fármacos , Animais , Creatina/metabolismo , Feminino , Masculino , Viés de Publicação , Risco , Análise de Sobrevida , Fatores de Tempo
18.
J Appl Physiol (1985) ; 131(3): 1088-1099, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382841

RESUMO

The aim of this study was to investigate the effects of direct creatine infusion on fetal systemic metabolic and cardiovascular responses to mild acute in utero hypoxia. Pregnant ewes (n = 28) were surgically instrumented at 118 days gestation (dGa). A constant intravenous infusion of creatine (6 mg·kg-1·h-1) or isovolumetric saline (1.5 mL·h-1) began at 121 dGa. After 10 days, fetuses were subjected to 10-min umbilical cord occlusion (UCO) to induce mild global hypoxia (saline-UCO, n = 8; creatine-UCO, n = 7) or sham UCO (saline-control, n = 6; creatine-control, n = 7). Cardiovascular, arterial blood gases and metabolites, and plasma creatine were monitored before, during, and then for 72 h following the UCO. Total creatine content in discrete fetal brain regions was also measured. Fetal creatine infusion increased plasma concentrations fivefold but had no significant effects on any measurement pre-UCO. Creatine did not alter fetal physiology during the UCO or in the early recovery stage, up to 24 h after UCO. During the late recovery stage, 24-72 h after UCO, there was a significant reduction in the arterial oxygen pressure and saturation in creatine fetuses (PUCO × TREATMENT = 0.02 and 0.04, respectively). At 72 h after UCO, significant creatine loading was detected in cortical gray matter, hippocampus, thalamus, and striatum (PTREATMENT = 0.01-0.001). In the striatum, the UCO itself increased total creatine content (PUCO = 0.019). Overall, fetal creatine supplementation may alter oxygen flux following an acute hypoxic insult. Increasing total creatine content in the striatum may also be a fetal adaptation to acute oxygen deprivation.NEW & NOTEWORTHY Direct fetal creatine supplementation increased plasma and cerebral creatine concentrations but did not alter fetal body weight, basal cardiovascular output, or blood chemistry. Creatine-treated fetuses displayed changes to arterial oxygenation 24-72 h after acute global hypoxia. An increase in striatum total creatine levels following UCO was also noted and suggests that increasing creatine tissue availability may be an adaptive response against the effects of hypoxia.


Assuntos
Creatina , Cordão Umbilical , Animais , Suplementos Nutricionais , Feminino , Feto , Hipóxia , Gravidez , Ovinos
19.
Nutrients ; 13(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540766

RESUMO

Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research "road forward" to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.


Assuntos
Creatina/metabolismo , Saúde do Lactente , Reprodução/fisiologia , Trifosfato de Adenosina/biossíntese , Animais , Encéfalo/embriologia , Creatina/administração & dosagem , Dieta , Metabolismo Energético/fisiologia , Feminino , Desenvolvimento Fetal/fisiologia , Feto/metabolismo , Genitália Feminina/metabolismo , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Gravidez
20.
Pediatr Res ; 68(5): 393-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20639795

RESUMO

We hypothesized that maternal creatine supplementation from mid-pregnancy would protect the diaphragm of the newborn spiny mouse from the effects of intrapartum hypoxia. Pregnant mice were fed a control or 5% creatine-supplemented diet from mid-gestation. On the day before term, intrapartum hypoxia was induced by isolating the pregnant uterus in a saline bath for 7.5-8 min before releasing and resuscitating the fetuses. Surviving pups were placed with a cross-foster dam, and diaphragm tissue was collected at 24 h postnatal age. Hypoxia caused a significant decrease in the cross-sectional area (∼19%) and contractile function (26.6% decrease in maximum Ca2=-activated force) of diaphragm fibers. The mRNA levels of the muscle mass-regulating genes MuRF1 and myostatin were significantly increased (2-fold). Maternal creatine significantly attenuated hypoxia-induced fiber atrophy, contractile dysfunction, and changes in mRNA levels. This study demonstrates that creatine loading before birth significantly protects the diaphragm from hypoxia-induced damage at birth.


Assuntos
Animais Recém-Nascidos , Creatina , Diafragma , Suplementos Nutricionais , Hipóxia Fetal/patologia , Feto , Animais , Creatina/administração & dosagem , Creatina/farmacologia , Diafragma/citologia , Diafragma/efeitos dos fármacos , Diafragma/patologia , Dieta , Feminino , Hipóxia Fetal/fisiopatologia , Feto/anatomia & histologia , Feto/efeitos dos fármacos , Feto/patologia , Idade Gestacional , Camundongos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA