Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 84(20): 3967-3978.e8, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39317199

RESUMO

While many mRNAs contain more than one translation initiation site (TIS), the functions of most alternative TISs and their corresponding protein isoforms (proteoforms) remain undetermined. Here, we showed that alternative usage of CUG and AUG TISs in neuronal pentraxin receptor (NPR) mRNA produced two proteoforms, of which the ratio was regulated by RNA secondary structure and neuronal activity. Downstream AUG initiation truncated the N-terminal transmembrane domain and produced a secreted NPR proteoform sufficient in promoting synaptic clustering of AMPA-type glutamate receptors. Mutations that altered the ratio of NPR proteoforms reduced AMPA receptors in parvalbumin-positive interneurons and affected learning behaviors in mice. In addition to NPR, upstream AUU-initiated N-terminal extension of C1q-like synaptic organizers anchored these otherwise secreted factors to the membrane. Together, these results uncovered the plasticity of N-terminal signal sequences regulated by alternative TIS usage as a potentially widespread mechanism in diversifying protein localization and functions.


Assuntos
Proteínas do Tecido Nervoso , Receptores de AMPA , Sinapses , Animais , Camundongos , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Sinapses/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Humanos , Iniciação Traducional da Cadeia Peptídica , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Interneurônios/metabolismo , Células HEK293 , Códon de Iniciação/genética , Camundongos Endogâmicos C57BL , Masculino , Plasticidade Neuronal/genética , Mutação , Neurônios/metabolismo , Parvalbuminas/metabolismo , Parvalbuminas/genética , Proteína C-Reativa , Proteínas de Ligação ao Cálcio , Moléculas de Adesão de Célula Nervosa
2.
Mol Psychiatry ; 27(12): 4918-4927, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36050437

RESUMO

The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light-dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or ß2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.


Assuntos
Acetilcolina , Complexo Nuclear Basolateral da Amígdala , Neurônios GABAérgicos , Estresse Psicológico , Animais , Masculino , Camundongos , Acetilcolina/metabolismo , Tonsila do Cerebelo/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37778006

RESUMO

Clinical and preclinical studies have identified immunosuppressive effects of nicotine, with potential implications for treating nicotine addiction. Here we review how nicotine can regulate microglia, the resident macrophages in the brain, and corresponding effects of nicotine on neuroimmune signaling. There is significant evidence that activation of α7 nicotinic acetylcholine receptors (nAChRs) on microglia can trigger an anti-inflammatory cascade that alters microglial polarization and activity, cytokine release, and intracellular calcium concentrations, leading to neuroprotection. These anti-inflammatory effects of nicotine-dependent α7 nAChR signaling are lost during withdrawal, suggesting that neuroimmune signaling is potentiated during abstinence, and thus, heightened microglial activity may drive circuit disruption that contributes to withdrawal symptoms and hyperkatifeia. In sum, the clinical literature has highlighted immunomodulatory effects of nicotine and the potential for anti-inflammatory compounds to treat addiction. The preclinical literature investigating the underlying mechanisms points to a role of microglial engagement in the circuit dysregulation and behavioral changes that occur during nicotine addiction and withdrawal, driven, at least in part, by activation of α7 nAChRs on microglia. Specifically targeting microglial signaling may help alleviate withdrawal symptoms in people with nicotine dependence and help to promote abstinence.

4.
Pharmacol Res ; 191: 106745, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011774

RESUMO

Human epidemiological studies have identified links between nicotine intake and stress disorders, including anxiety, depression and PTSD. Here we review the clinical evidence for activation and desensitization of nicotinic acetylcholine receptors (nAChRs) relevant to affective disorders. We go on to describe clinical and preclinical pharmacological studies suggesting that nAChR function may be involved in the etiology of anxiety and depressive disorders, may be relevant targets for medication development, and may contribute to the antidepressant efficacy of non-nicotinic therapeutics. We then review what is known about nAChR function in a subset of limbic system areas (amygdala, hippocampus and prefrontal cortex), and how this contributes to stress-relevant behaviors in preclinical models that may be relevant to human affective disorders. Taken together, the preclinical and clinical literature point to a clear role for ACh signaling through nAChRs in regulation of behavioral responses to stress. Disruption of nAChR homeostasis is likely to contribute to the psychopathology observed in anxiety and depressive disorders. Targeting specific nAChRs may therefore be a strategy for medication development to treat these disorders or to augment the efficacy of current therapeutics.


Assuntos
Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Nicotina/farmacologia , Tonsila do Cerebelo/metabolismo , Córtex Pré-Frontal/metabolismo , Ansiedade
5.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405936

RESUMO

While previous studies suggest that many mRNAs contain more than one translation initiation site (TIS), the biological significance of most alternative TISs and their corresponding protein isoforms (proteoforms) remains undetermined. Here we show that alternative translation initiation at a CUG and an AUG TIS in neuronal pentraxin receptor (NPR) mRNA produces two proteoforms, and their relative abundance is regulated by both neuronal activity as well as an adjacent RNA secondary structure. Downstream AUG initiation transforms the N-terminal transmembrane domain into a signal peptide, thereby converting NPR to a secreted factor sufficient to promote synaptic clustering of AMPA-type glutamate receptors. Changing the relative proteoform ratio, but not the overall NPR abundance reduces AMPA receptor in parvalbumin (PV)-positive interneurons and induces changes in learning behaviors in mice. In addition to NPR, N-terminal extensions of C1q-like synaptic organizers, mediated by upstream AUU start codons, anchor these otherwise secreted factors to the membrane. Thus, our results uncovered the plasticity of N-terminal signal sequences regulated by alternative TIS usage as a widespread mechanism to diversify protein localization and functions.

6.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895217

RESUMO

Rates of alcohol use disorder (AUD) have escalated in recent years, with a particular increase among women. Women are more susceptible to stress-induced alcohol drinking, and preclinical data suggest that stress can increase alcohol intake in female rodents; however, a comprehensive understanding of sex-specific neurobiological substrates underlying this phenomenon is still emerging. Microglia, the resident macrophages of the brain, are essential for reshaping neuronal processes, and microglial activity contributes to overall neuronal plasticity. We investigated microglial dynamics and morphology in limbic brain structures of male and female mice following exposure to stress, alcohol or both challenges. In a modified paradigm of intermittent binge drinking (repeated "drinking in the dark"), we determined that female, but not male, mice increased their alcohol consumption after exposure to a physical stressor and re-exposure trials in the stress-paired context. Ethanol (EtOH) drinking and stress altered a number of microglial parameters, including overall number, in subregions of the amygdala and hippocampus, with effects that were somewhat more pronounced in female mice. We used the CSF1R antagonist PLX3397 to deplete microglia in female mice to determine whether microglia contribute to stress-induced escalation of EtOH intake. We observed that microglial depletion attenuated stress-induced alcohol intake with no effect in the unstressed group. These findings suggest that microglial activity can contribute to alcohol intake under stressful conditions, and highlight the importance of evaluating sex-specific mechanisms that could result in tailored interventions for AUD in women.

7.
Psychopharmacology (Berl) ; 239(7): 2041-2061, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35359158

RESUMO

Clinical studies suggest that women are more likely than men to relapse to alcohol drinking in response to stress; however, the mechanisms underlying this sex difference are not well understood. A number of preclinical behavioral models have been used to study stress-induced alcohol intake. Here, we review paradigms used to study effects of stress on alcohol intake in rodents, focusing on findings relevant to sex differences. To date, studies of sex differences in stress-induced alcohol drinking have been somewhat limited; however, there is evidence that amygdala-centered circuits contribute to effects of stress on alcohol seeking. In addition, we present an overview of inflammatory pathways leading to microglial activation that may contribute to alcohol-dependent behaviors. We propose that sex differences in neuronal function and inflammatory signaling in circuits centered on the amygdala are involved in sex-dependent effects on stress-induced alcohol seeking and suggest that this is an important area for future studies.


Assuntos
Alcoolismo , Caracteres Sexuais , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/metabolismo , Tonsila do Cerebelo/metabolismo , Etanol/farmacologia , Feminino , Humanos , Masculino
8.
Behav Brain Res ; 388: 112658, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32339550

RESUMO

Early life adversity in humans is linked to cognitive deficits and increased risk of mental illnesses, including depression, bipolar disorder, and schizophrenia, with evidence for different vulnerabilities in men versus women. Modeling early life adversity in rodents shows similar neuropsychological deficits that may partially be driven by sex-dependent dysfunction in parvalbumin (PV) interneurons in the prefrontal cortex (PFC), hippocampus (HPC), and basolateral amygdala (BLA). Research demonstrates that PV interneurons are particularly susceptible to oxidative stress; therefore, accumulation of oxidative damage may drive PV dysfunction following early life adversity. The goal of this study was to quantify oxidative stress accumulation in PV neurons in rats exposed to maternal separation (MS). Pups were separated from their dam and littermates for 4 h per day from postnatal day (P)2 to 20. Serial sections from the PFC, HPC, and BLA of juvenile (P20) rats of both sexes were immunohistochemically stained with antibodies against PV and 8-oxo-dG, a marker for oxidative DNA damage. PV cell counts, colocalization with 8-oxo-dG, and intensity of each signal were measured in each region to determine the effects of MS and establish whether MS-induced oxidative damage varies between sexes. A significant increase in colocalization of PV and 8-oxo-dG was found in the PFC and HPC, indicating increased oxidative stress in that cell population following MS. Region-specific sex differences were also revealed in the PFC, BLA, and HPC. These data identify oxidative stress during juvenility as a potential mechanism mediating PV dysfunction in individuals with a history of early life adversity.


Assuntos
Encéfalo/metabolismo , Privação Materna , Neurônios/metabolismo , Estresse Oxidativo , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA