Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38953933

RESUMO

PURPOSE: There is an unmet need for compounds to detect fibrillar forms of alpha-synuclein (αSyn) and 4-repeat tau, which are critical in many neurodegenerative diseases. Here, we aim to develop an efficient surface plasmon resonance (SPR)-based assay to facilitate the characterization of small molecules that can bind these fibrils. METHODS: SPR measurements were conducted to characterize the binding properties of fluorescent ligands/compounds toward recombinant amyloid-beta (Aß)42, K18-tau, full-length 2N4R-tau and αSyn fibrils. In silico modeling was performed to examine the binding pockets of ligands on αSyn fibrils. Immunofluorescence staining of postmortem brain tissue slices from Parkinson's disease patients and mouse models was performed with fluorescence ligands and specific antibodies. RESULTS: We optimized the protocol for the immobilization of Aß42, K18-tau, full-length 2N4R-tau and αSyn fibrils in a controlled aggregation state on SPR-sensor chips and for assessing their binding to ligands. The SPR results from the analysis of binding kinetics suggested the presence of at least two binding sites for all fibrils, including luminescent conjugated oligothiophenes, benzothiazole derivatives, nonfluorescent methylene blue and lansoprazole. In silico modeling studies for αSyn (6H6B) revealed four binding sites with a preference for one site on the surface. Immunofluorescence staining validated the detection of pS129-αSyn positivity in the brains of Parkinson's disease patients and αSyn preformed-fibril injected mice, 6E10-positive Aß in arcAß mice, and AT-8/AT-100-positivity in pR5 mice. CONCLUSION: SPR measurements of small molecules binding to Aß42, K18/full-length 2N4R-tau and αSyn fibrils suggested the existence of multiple binding sites. This approach may provide efficient characterization of compounds for neurodegenerative disease-relevant proteinopathies.

2.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731477

RESUMO

The misfolding and aggregation of the human prion protein (PrP) is associated with transmissible spongiform encephalopathies (TSEs). Intermediate conformations forming during the conversion of the cellular form of PrP into its pathological scrapie conformation are key drivers of the misfolding process. Here, we analyzed the properties of the C-terminal domain of the human PrP (huPrP) and its T183A variant, which is associated with familial forms of TSEs. We show that the mutation significantly enhances the aggregation propensity of huPrP, such as to uniquely induce amyloid formation under physiological conditions by the sole C-terminal domain of the protein. Using NMR spectroscopy, biophysics, and metadynamics simulations, we identified the structural characteristics of the misfolded intermediate promoting the aggregation of T183A huPrP and the nature of the interactions that prevent this species to be populated in the wild-type protein. In support of these conclusions, POM antibodies targeting the regions that promote PrP misfolding were shown to potently suppress the aggregation of this amyloidogenic mutant.


Assuntos
Mutação , Proteínas Priônicas/química , Proteínas Priônicas/genética , Dobramento de Proteína , Amiloide/química , Amiloide/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Doenças Priônicas/etiologia , Doenças Priônicas/metabolismo , Príons , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica , Deficiências na Proteostase , Relação Estrutura-Atividade
3.
PLoS Pathog ; 17(12): e1010083, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910784

RESUMO

Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvß6 and αvß8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mß6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvß6-positive CMT-93 cells, whereas mß8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvß8-positive M000216 cells. Soluble integrin αvß6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvß6/αvß8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvß6/ß8, where the distal leucine residue dips into a hydrophobic pocket of ß6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvß6/ß8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvß6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/metabolismo , Antígenos de Neoplasias/metabolismo , Integrinas/metabolismo , Receptores Virais/metabolismo , Animais , Humanos , Camundongos
4.
Eur J Nucl Med Mol Imaging ; 49(7): 2137-2152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35128565

RESUMO

PURPOSE: Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS: We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 µm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS: PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS: We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 µm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/metabolismo , Proteínas tau/metabolismo
5.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212871

RESUMO

To understand the complex fluorescence properties of astraphloxin (CY3)-labelled oligonucleotides, it is necessary to take into account the redox properties of the nucleobases. In oligonucleotide hybrids, we observed a dependence of the fluorescence intensity on the oxidation potential of the neighbouring base pair. For the series I < A < G < 8-oxoG, the extent of fluorescence quenching follows the trend of decreasing oxidation potentials. In a series of 7 nt hybrids, stacking interactions of CY3 with perfect match and mismatch base pairs were found to stabilise the hybrid by 7-8 kJ/mol. The fluorescence measurements can be explained by complex formation resulting in fluorescence quenching that prevails over the steric effect of a reduced excited state trans-cis isomerisation, which was expected to increase the fluorescence efficiency of the dye when stacking to a base pair. This can be explained by the fact that, in a double strand, base pairing and stacking cause a dramatic change in the oxidation potential of the nucleobases. In single-molecule fluorescence measurements, the oxidation of G to 8-oxoG was observed as a result of photoinduced electron transfer and subsequent chemical reactions. Our results demonstrate that covalently linked CY3 is a potent oxidant towards dsDNA. Sulfonated derivatives should be used instead.


Assuntos
Pareamento de Bases , Oligonucleotídeos/química , Sequência de Bases , Cinética , Oxirredução , Imagem Individual de Molécula , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície
6.
Appl Environ Microbiol ; 81(16): 5546-51, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048935

RESUMO

The consequences of cellular heterogeneity, such as biocide persistence, can only be tackled by studying each individual in a cell population. Fluorescent tags provide tools for the high-throughput analysis of genomes, RNA transcripts, or proteins on the single-cell level. However, the analysis of lower-molecular-weight compounds that elude tagging is still a great challenge. Here, we describe a novel high-throughput microscale sample preparation technique for single cells that allows a mass spectrum to be obtained for each individual cell within a microbial population. The approach presented includes spotting Chlamydomonas reinhardtii cells, using a noncontact microarrayer, onto a specialized slide and controlled lysis of cells separated on the slide. Throughout the sample preparation, analytes were traced and individual steps optimized using autofluorescence detection of chlorophyll. The lysates of isolated cells are subjected to a direct, label-free analysis using matrix-assisted laser desorption ionization mass spectrometry. Thus, we were able to differentiate individual cells of two Chlamydomonas reinhardtii strains based on single-cell mass spectra. Furthermore, we showed that only population profiles with real single-cell resolution render a nondistorted picture of the phenotypes contained in a population.


Assuntos
Chlamydomonas reinhardtii/química , Ensaios de Triagem em Larga Escala , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
7.
J Biol Chem ; 288(4): 2246-60, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23223635

RESUMO

A persistent, low-grade inflammation accompanies many chronic diseases that are promoted by physical inactivity and improved by exercise. The beneficial effects of exercise are mediated in large part by peroxisome proliferator-activated receptor γ coactivator (PGC) 1α, whereas its loss correlates with propagation of local and systemic inflammatory markers. We examined the influence of PGC-1α and the related PGC-1ß on inflammatory cytokines upon stimulation of muscle cells with TNFα, Toll-like receptor agonists, and free fatty acids. PGC-1s differentially repressed expression of proinflammatory cytokines by targeting NF-κB signaling. Interestingly, PGC-1α and PGC-1ß both reduced phoshorylation of the NF-κB family member p65 and thereby its transcriptional activation potential. Taken together, the data presented here show that the PGC-1 coactivators are able to constrain inflammatory events in muscle cells and provide a molecular link between metabolic and immune pathways. The PGC-1s therefore represent attractive targets to not only improve metabolic health in diseases like type 2 diabetes but also to limit the detrimental, low-grade inflammation in these patients.


Assuntos
Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Doença Crônica , Citocinas/metabolismo , Progressão da Doença , Inflamação , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculos/metabolismo , NF-kappa B/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Fatores de Transcrição
8.
Nephrol Dial Transplant ; 29(1): 136-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24097801

RESUMO

BACKGROUND: Uromodulin (Tamm-Horsfall protein) is the most abundant protein excreted in the urine under physiological conditions. It is exclusively produced in the kidney and secreted into the urine via proteolytic cleavage. The involvement of UMOD, the gene that encodes uromodulin, in rare autosomal dominant diseases, and its robust genome-wide association with the risk of chronic kidney disease suggest that the level of uromodulin in urine could represent a critical biomarker for kidney function. The structure of uromodulin is complex, with multiple disulfide bonds and typical domains of extracellular proteins. METHODS: Thus far, the conditions influencing stability and measurement of uromodulin in human urine have not been systematically investigated, giving inconsistent results. In this study, we used a robust, in-house ELISA to characterize the conditions of sampling and storage necessary to provide a faithful dosage of uromodulin in the urine. RESULTS: The levels of uromodulin in human urine were significantly affected by centrifugation and vortexing, as well as by the conditions and duration of storage. CONCLUSIONS: These results validate a simple, low-cost ELISA and document the optimal conditions of processing and storage for measuring uromodulin in human urine.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Rim/metabolismo , Manejo de Espécimes , Uromodulina/urina , Adolescente , Adulto , Animais , Biomarcadores/urina , Centrifugação , Feminino , Gota/metabolismo , Humanos , Hiperuricemia/metabolismo , Nefropatias/metabolismo , Masculino , Pessoa de Meia-Idade , Manejo de Espécimes/normas , Temperatura , Adulto Jovem
9.
RSC Chem Biol ; 4(7): 494-505, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37415866

RESUMO

Late-stage prostate cancer often acquires resistance to conventional chemotherapies and transforms into a hormone-refractory, drug-resistant, and non-curative disease. Developing non-invasive tools to detect the biochemical changes that correlate with drug efficacy and reveal the onset of drug resistance would have important ramifications in managing the treatment regimen for individual patients. Here, we report the selection of new Designed Ankyrin Repeat Proteins (DARPins) that show high affinity toward prostate-specific antigen (PSA), a biomarker used in clinical monitoring of prostate cancer. Ribosome display and in vitro screening tools were used to select PSA-binding DARPins based on their binding affinity, selectivity, and chemical constitution. Surface plasmon resonance measurements demonstrated that the four lead candidates bind to PSA with nanomolar affinity. DARPins were site-specifically functionalised at a unique C-terminal cysteine with a hexadentate aza-nonamacrocyclic chelate (NODAGA) for subsequent radiolabelling with the positron-emitting radionuclide 68Ga. [68Ga]GaNODAGA-DARPins showed high stability toward transchelation and were stable in human serum for >2 h. Radioactive binding assays using streptavidin-loaded magnetic beads confirmed that the functionalisation and radiolabelling did not compromise the specificity of [68Ga]GaNODAGA-DARPins toward PSA. Biodistribution experiments in athymic nude mice bearing subcutaneous prostate cancer xenografts derived from the LNCaP cell line revealed that three of the four [68Ga]GaNODAGA-DARPins displayed specific tumour-binding in vivo. For DARPin-6, tumour-uptake in the normal group reached 4.16 ± 0.58% ID g-1 (n = 3; 2 h post-administration) and was reduced by ∼50% by competitive binding with a low molar activity formulation (blocking group: 2.47 ± 0.42% ID g-1; n = 3; P value = 0.018). Collectively, the experimental results support the future development of new PSA-specific imaging agents for potential use in monitoring the efficacy of androgen receptor (AR)-targeted therapies.

10.
Chembiochem ; 11(11): 1563-73, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20572248

RESUMO

Galectins are a class of carbohydrate-binding proteins named for their galactose-binding preference and are involved in a host of processes ranging from homeostasis of organisms to immune responses. As a first step towards correlating the carbohydrate-binding preferences of the different galectins with their biological functions, we determined carbohydrate recognition fine-specificities of galectins with the aid of carbohydrate microarrays. A focused set of oligosaccharides considered relevant to galectins was prepared by chemical synthesis. Structure-activity relationships for galectin-sugar interactions were determined, and these helped in the establishment of redundant and specific galectin actions by comparison of binding preferences. Distinct glycosylations on the basic lactosyl motifs proved to be key to galectin binding regulation--and therefore galectin action--as either high-affinity ligands are produced or binding is blocked. High-affinity ligands such as the blood group antigens that presumably mediate particular functions were identified.


Assuntos
Carboidratos/química , Galectinas/metabolismo , Análise em Microsséries , Oligossacarídeos/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Humanos , Oligossacarídeos/síntese química , Ligação Proteica , Relação Estrutura-Atividade
11.
Methods Appl Fluoresc ; 8(3): 035010, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428873

RESUMO

Single-molecule hybridisation of CY3 dye labelled short oligonucleotides to surface immobilised probes was investigated in zero-mode waveguide nanostructures using a modified DNA sequencer. At longer measuring times, we observed changes of the initial hybridisation fluorescence pulse pattern which we attribute to products created by chemical reactions at the nucleobases. The origin is a charge separated state created by a photoinduced electron transfer from nucleobases to the dye followed by secondary reactions with oxygen and water, respectively. The positive charge can migrate through the hybrid resulting in base modifications at distant sites. Static fluorescence spectra were recorded in order to determine the properties of CY3 stacking to different base pairs, and compared to pulse intensities. A characteristic pulse pattern change was assigned to the oxidation of G to 8-oG besides the formation of a number of secondary products that are not yet identified. Further, we present a method to visualise the degree of chemical reactions to gain an overview of ongoing processes. Our study demonstrates that CY3 is able to oxidise nucleobases in ds DNA, and also in ss overhangs. An important finding is the correlation between nucleobase oxidation potential and fluorescence quenching which explains the intensity changes observed in single molecule measurements. The analysis of fluorescence traces provides the opportunity to track complete and coherent reaction sequences enabling to follow the fate of a single molecule over a long period of time, and to observe chemical reactions in real-time. This opens up the opportunity to analyse reaction pathways, to detect new products and short-lived intermediates, and to investigate rare events due to the large number of single molecules observed in parallel.


Assuntos
Carbocianinas/uso terapêutico , Oligonucleotídeos/química , Fluorescência , Humanos , Oxirredução
12.
Methods Mol Biol ; 2064: 113-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31565770

RESUMO

Mass spectrometry based metabolomics is the highly multiplexed, label-free analysis of small molecules such as metabolites or lipids in biological systems, and thus one of the most direct ways to characterize phenotypes. However, the phenotyping of populations with single-cell resolution is a great challenge due to the small number of molecules contained in an individual cell. Here we describe a microarray-based sample preparation workflow for MALDI mass spectrometry that has single-cell sensitivity and allows high-throughput analysis of lipids and pigments in single algae cells. The microarray targets receive individual cells in 1430 separate spots that allow the cells to be lysed individually without cross-contamination. Using positive ion mode and 2,5-dihydroxybenzoic acid as the MALDI matrix, the mass spectra unveil information about the relative composition of more than 20 different lipids/pigments in each individual cell within the population. Thus, the method allows the analysis of cellular phenotypes in a population on a completely new level.


Assuntos
Chlamydomonas reinhardtii/química , Lipídeos/análise , Pigmentos Biológicos/análise , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Análise Serial de Tecidos/métodos , Chlamydomonas reinhardtii/citologia , Fluxo de Trabalho
13.
Nat Commun ; 11(1): 5199, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060572

RESUMO

Protein ADP-ribosylation is a reversible post-translational modification that regulates important cellular functions. The identification of modified proteins has proven challenging and has mainly been achieved via enrichment methodologies. Random mutagenesis was used here to develop an engineered Af1521 ADP-ribose binding macro domain protein with 1000-fold increased affinity towards ADP-ribose. The crystal structure reveals that two point mutations K35E and Y145R form a salt bridge within the ADP-ribose binding domain. This forces the proximal ribose to rotate within the binding pocket and, as a consequence, improves engineered Af1521 ADPr-binding affinity. Its use in our proteomic ADP-ribosylome workflow increases the ADP-ribosylated protein identification rates and yields greater ADP-ribosylome coverage. Furthermore, generation of an engineered Af1521 Fc fusion protein confirms the improved detection of cellular ADP-ribosylation by immunoblot and immunofluorescence. Thus, this engineered isoform of Af1521 can also serve as a valuable tool for the analysis of cellular ADP-ribosylation under in vivo conditions.


Assuntos
ADP-Ribosilação/fisiologia , Adenosina Difosfato Ribose/metabolismo , Engenharia de Proteínas/métodos , Proteínas/metabolismo , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutagênese , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/isolamento & purificação , Proteômica/métodos
14.
Environ Microbiol ; 11(8): 2179-89, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19453699

RESUMO

Functional microarrays are powerful tools that allow the parallel detection of multiple strains at the species level and therefore to rapidly obtain information on microbial communities in the environment. However, the design of suitable probes is prone to uncertainties, as it is based so far on in silico predictions including weighted mismatch number and Gibbs free-energy values. This study describes the experimental selection of probes targeting subsequences of the nifH gene to study the community structure of diazotrophic populations present in Damma glacier (Swiss Central Alps) forefield soils. Using the Geniom One in situ synthesis technology (Febit, Germany), 2727 in silico designed candidate probes were tested. A total of 946 specific probes were selected and validated. This probe set covered a large diversity of the NifH phylotypes (35 out of the 45) found in the forefield. Hybridization predictors were tested statistically. Gibbs free-energy value for probe-target binding gave the best prediction for hybridization efficiency, while the weighted mismatch number was not significantly associated to probe specificity. In this study, we demonstrate that extensive experimental tests of probe-hybridization behaviour against sequences present in the studied environment remain a prerequisite for meaningful probe selection.


Assuntos
Camada de Gelo/microbiologia , Fixação de Nitrogênio/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Oxirredutases/genética , Simulação por Computador , Sondas de Oligonucleotídeos , Oxirredutases/análise , Solo/análise , Microbiologia do Solo
15.
Environ Microbiol ; 11(4): 779-800, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19396938

RESUMO

For cultivation-independent and highly parallel analysis of members of the genus Burkholderia, an oligonucleotide microarray (phylochip) consisting of 131 hierarchically nested 16S rRNA gene-targeted oligonucleotide probes was developed. A novel primer pair was designed for selective amplification of a 1.3 kb 16S rRNA gene fragment of Burkholderia species prior to microarray analysis. The diagnostic performance of the microarray for identification and differentiation of Burkholderia species was tested with 44 reference strains of the genera Burkholderia, Pandoraea, Ralstonia and Limnobacter. Hybridization patterns based on presence/absence of probe signals were interpreted semi-automatically using the novel likelihood-based strategy of the web-tool Phylo- Detect. Eighty-eight per cent of the reference strains were correctly identified at the species level. The evaluated microarray was applied to investigate shifts in the Burkholderia community structure in acidic forest soil upon addition of cadmium, a condition that selected for Burkholderia species. The microarray results were in agreement with those obtained from phylogenetic analysis of Burkholderia 16S rRNA gene sequences recovered from the same cadmiumcontaminated soil, demonstrating the value of the Burkholderia phylochip for determinative and environmental studies.


Assuntos
Burkholderia/classificação , Burkholderia/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Sensibilidade e Especificidade , Análise de Sequência de DNA , Microbiologia do Solo , Árvores
16.
ACS Chem Biol ; 13(3): 666-675, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29359918

RESUMO

The outer membrane (OM) in Gram-negative bacteria is an asymmetric bilayer with mostly lipopolysaccharide (LPS) molecules in the outer leaflet. During OM biogenesis, new LPS molecules are transported from their site of assembly on the inner membrane to the OM by seven LPS transport proteins (LptA-G). The complex formed between the integral ß-barrel OM protein LptD and the lipoprotein LptE is responsible for transporting LPS from the periplasmic side of the OM to its final location on the cell surface. Because of its essential function in many Gram-negative bacteria, the LPS transport pathway is an interesting target for the development of new antibiotics. A family of macrocyclic peptidomimetics was discovered recently that target LptD and inhibit LPS transport specifically in Pseudomonas spp. The related molecule Murepavadin is in clinical development for the treatment of life-threatening infections caused by P. aeruginosa. To characterize the interaction of these antibiotics with LptD from P. aeruginosa, we characterized the binding site by cross-linking to a photolabeling probe. We used a hypothesis-free mass spectrometry-based proteomic approach to provide evidence that the antibiotic cross-links to the periplasmic segment of LptD, containing a ß-jellyroll domain and an N-terminal insert domain characteristic of Pseudomonas spp. Binding of the antibiotic to the periplasmic segment is expected to block LPS transport, consistent with the proposed mode of action and observed specificity of these antibiotics. These insights may prove valuable for the discovery of new antibiotics targeting the LPS transport pathway in other Gram-negative bacteria.


Assuntos
Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Peptidomiméticos/metabolismo , Pseudomonas aeruginosa/química , Proteínas da Membrana Bacteriana Externa/química , Sítios de Ligação , Bactérias Gram-Negativas/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Periplasma , Domínios Proteicos , Transporte Proteico
17.
Methods Mol Biol ; 382: 17-31, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18220222

RESUMO

The complexity of workflows for the production of high quality microarrays asks for the careful evaluation and implementation of materials and methods. As a cornerstone of the whole microarray process, the microarray substrate has to be chosen appropriately and a number of crucial considerations in respect to matching the research question with the technical requirements and possibilities have to be taken into account. In the following, how to lay the fundamental for high performance microarray experiments by evaluating basic quality requirements and the selection of suitable slide surface architectures for a variety of applications was concentrated.


Assuntos
Anticorpos/química , Carboidratos/química , DNA/química , Vidro/química , Análise em Microsséries/métodos , Fragmentos de Peptídeos/química , Controle de Qualidade , Propriedades de Superfície
18.
Methods Mol Biol ; 382: 33-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18220223

RESUMO

As the performance of microarray experiments is directly dependent on the quality of the materials, the suitability of the protocols, and the accuracy of the work performed, optimization of existing microarray workflows is needed in almost every experiment to achieve higher quality and meaningfulness of the generated data. In the following, we describe a workflow for the optimization of microarray processing parameters, based on the previously selected surface structure. Four simple model experiments with dye-labeled compounds is used to determine crucial experimental parameters including spotting concentration, spotting solution, immobilization efficiency, and blocking conditions even in cases where recommendations from the slide manufacturer or from the literature are missing. In this article, processing parameters for DNA, peptide, antibody, and carbohydrate microarrays are outlined. The applicability of the model experiments is demonstrated and described in detail on the example of short oligonucleotides.


Assuntos
Anticorpos/química , Carboidratos/química , DNA/química , Vidro/química , Análise em Microsséries/métodos , Fragmentos de Peptídeos/química , Controle de Qualidade , Reprodutibilidade dos Testes
19.
Methods Mol Biol ; 382: 53-66, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18220224

RESUMO

Based on the selection of a suitable surface chemistry and bearing the option for optimization using a defined workflow, standard experimental protocols for the processing of microarrays can be used as starting points for a successful experiment. In Chapters 2 and 3, general quality considerations and the selection of surface chemistry have been discussed. A workflow for the selection of slide surface architectures and the optimization of microarray processing parameters also has been described. In the present article, processing parameters for DNA, peptide, antibody, and carbohydrate microarrays are outlined that serve as a first recommended step in the iterative establishment process. For a number of popular applications of microarray technology the outlined protocols can be applied to directly generate high-quality results.


Assuntos
Anticorpos/química , Carboidratos/química , DNA/química , Vidro/química , Análise em Microsséries/métodos , Fragmentos de Peptídeos/química , Processamento Eletrônico de Dados , Controle de Qualidade
20.
J Control Release ; 262: 118-126, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28734901

RESUMO

The use of molecular markers for inflammation in the gastrointestinal tract could empower optical imaging modalities for early diagnosis and eventually personalized timely treatments. A major hurdle to the widespread use of functional fluorescence imaging is the absence of suitable contrast agents, in particular to be administered via the oral route due to the usual proteolytic susceptibility of the biomarkers. By designing a retro-inverso peptide, starting from a previously described sequence specific for N-cadherin, we achieved resistance to gastrointestinal degradation and even slightly improved specificity towards the target, both in ex vivo and in vivo experimental colitis. Simulations at fundamental molecular level suggested that the introduced retro-inverso modifications did not affect the folding of the peptide, leaving its ability to interact with the binding pocket of the monomeric N-cadherin unaltered, even when fluorescently labeled. Possible further derivatization of this sequence could be envisaged to further extend the potential of the designed retro-inverso peptide as diagnostic or theranostic agent for the oral route.


Assuntos
Colite/diagnóstico por imagem , Peptídeos/administração & dosagem , Administração Oral , Animais , Caderinas/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana , Células Epiteliais/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA