Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Chemistry ; 22(44): 15807-15818, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27633315

RESUMO

Record laboratory efficiencies of dye-sensitized solar cells have been recently reported using an alkoxysilyl-anchor dye, ADEKA-1 (over 14 %). In this work we use time-resolved techniques to study the impact of key preparation factors (dye synthesis route, addition of co-adsorbent, use of cobalt-based electrolytes of different redox potential, creation of insulating Al2 O3 layers and molecule capping passivation of the electrode) on the partial charge separation efficiencies in ADEKA-1 solar cells. We have observed that unwanted fast recombination of electrons from titania to the dye, probably associated with the orientation of the dyes on the titania surface, plays a crucial role in the performance of the cells. This recombination, taking place on the sub-ns and ns time scales, is suppressed in the optimized dye synthesis methods and upon addition of the co-adsorbent. Capping treatment significantly reduces the charge recombination between titania and electrolyte, improving the electron lifetime from tens of ms to hundreds of ms, or even to single seconds. Similar increase in electron lifetime is observed for homogenous Al2 O3 over-layers on titania nanoparticles, however, in this case the total solar cells photocurrent is decreased due to smaller electron injection yield from the dye. Our studies should be important for a broader use of very promising silyl-anchor dyes and the further optimization and development of dye-sensitized solar cells.

2.
Langmuir ; 30(9): 2505-12, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24568536

RESUMO

Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.


Assuntos
Corantes/química , Indóis/química , Lasers , Titânio/química , Óxido de Zinco/química , Nanopartículas/química , Tamanho da Partícula , Análise Espectral , Propriedades de Superfície , Fatores de Tempo
3.
Phys Chem Chem Phys ; 16(27): 14116-26, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24901747

RESUMO

A numerical study of optimal bandgaps of light absorbers in tandem solar cell configurations is presented with the main focus on dye-sensitized solar cells (DSSCs) and perovskite solar cells (PSCs). The limits in efficiency and the expected improvements of tandem structures are investigated as a function of total loss-in-potential (V(L)), incident photon to current efficiency (IPCE) and fill factor (FF) of individual components. It is shown that the optimal absorption onsets are significantly smaller than those derived for multi-junction devices. For example, for double-cell devices the onsets are at around 660 nm and 930 nm for DSSCs with iodide based electrolytes and at around 720 nm and 1100 nm for both DSSCs with cobalt based electrolytes and PSCs. Such configurations can increase the total sunlight conversion efficiency by about 35% in comparison to single-cell devices of the same VL, IPCE and FF. The relevance of such studies for tandem n-p DSSCs and for a proposed new configuration for PSCs is discussed. In particular, it is shown that maximum total losses of 1.7 V for DSSCs and 1.4 V for tandem PSCs are necessary to give any efficiency improvement with respect to the single bandgap device. This means, for example, a tandem n-p DSSC with TiO2 and NiO porous electrodes will hardly work better than the champion single DSSC. A source code of the program used for calculations is also provided.


Assuntos
Compostos de Cálcio/química , Corantes/química , Fontes de Energia Elétrica , Transferência de Energia/efeitos da radiação , Modelos Químicos , Óxidos/química , Energia Solar , Titânio/química , Absorção de Radiação , Compostos de Cálcio/efeitos da radiação , Corantes/efeitos da radiação , Simulação por Computador , Campos Eletromagnéticos , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Óxidos/efeitos da radiação , Titânio/efeitos da radiação
4.
Nat Commun ; 13(1): 254, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017481

RESUMO

Polaron-induced exciton quenching in thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs) can lead to external quantum efficiency (EQE) roll-off and device degradation. In this study, singlet-polaron annihilation (SPA) and triplet-polaron annihilation (TPA) were investigated under steady-state conditions and their relative contributions to EQE roll-off were quantified, using experimentally obtained parameters. It is observed that both TPA and SPA can lead to efficiency roll-off in 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) doped OLEDs. Charge imbalance and singlet-triplet annihilation (STA) were found to be the main contributing factors, whereas the device degradation process is mainly dominated by TPA. It is also shown that the impact of electric field-induced exciton dissociation is negligible under the DC operation regime (electric field < 0.5 MV cm-1). Through theoretical simulation, it is demonstrated that improvement to the charge recombination rate may reduce the effect of polaron-induced quenching, and thus significantly decrease the EQE roll-off.

5.
Nat Commun ; 11(1): 4310, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855426

RESUMO

Electrical pumping of organic semiconductor devices involves charge injection, transport, device on/off dynamics, exciton formation and annihilation processes. A comprehensive model analysing those entwined processes together is most helpful in determining the dominating loss pathways. In this paper, we report experimental and theoretical results of Super Yellow (Poly(p-phenylene vinylene) co-polymer) organic light emitting diodes operating at high current density under high voltage nanosecond pulses. We demonstrate complete exciton and charge carrier dynamics of devices, starting from charge injection to light emission, in a time scale spanning from the sub-ns to microsecond region, and compare results with optical pumping. The experimental data is accurately replicated by simulation, which provides a robust test platform for any organic materials. The universality of our model is successfully demonstrated by its application to three other laser active materials. The findings provide a tool to narrow the search for material and device designs for injection lasing.

6.
Nat Commun ; 11(1): 5623, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159048

RESUMO

Triplet excitons have been identified as the major obstacle to the realisation of organic laser diodes, as accumulation of triplet excitons leads to significant losses under continuous wave (CW) operation and/or electrical excitation. Here, we report the design and synthesis of a solid-state organic triplet quencher, as well as in-depth studies of its dispersion into a solution processable bis-stilbene-based laser dye. By blending the laser dye with 20 wt% of the quencher, negligible effects on the ASE thresholds, but a complete suppression of singlet-triplet annihilation (STA) and a 20-fold increase in excited-state photostability of the laser dye under CW excitation, were achieved. We used small-area OLEDs (0.2 mm2) to demonstrate efficient STA suppression by the quencher in the nanosecond range, supported by simulations to provide insights into the observed STA quenching under electrical excitation. The results demonstrate excellent triplet quenching ability under both optical and electrical excitations in the nanosecond range, coupled with excellent solution processability.

7.
ACS Appl Mater Interfaces ; 11(3): 3271-3279, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30582329

RESUMO

Among contemporary semiconductors, many of the best performing materials are based on [1]benzothieno[3,2- b][1]benzothiophene (BTBT). Alkylated derivatives of these small molecules not only provide high hole mobilities but also can be easily processed by thermal vacuum or solution deposition methods. Over the last decade, numerous publications have investigated molecular structures and charge transport properties to elucidate what makes these molecules so special. However, the race toward ever higher mobilities resulted in significantly deviating values, which exacerbates linking molecular structure to electronic properties. Moreover, a recently arisen debate on overestimation of organic field-effect transistor mobilities calls for a revaluation of these numbers. We synthesized and characterized four BTBT derivatives with either one or two alkyl chains (themselves consisting of either 8 or 10 carbon atoms) and investigated their spectroscopic, structural, and electrical properties. By employing two-probe, gated four-point probe and gated van der Pauw measurements, we compare field-effect mobility values at room and low temperatures and discuss their feasibility and viability. We attribute mobility changes to different angles between molecule planes and core-to-core double-layer stacking of asymmetric BTBT derivatives and show higher mobilities in the presence of more and longer alkyl chains. A so-called "zipper effect" brings BTBT cores in closer proximity promoting stronger intermolecular orbital coupling and hence higher charge transport.

8.
ACS Appl Mater Interfaces ; 10(25): 21681-21687, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29856202

RESUMO

Engineering the interface between the perovskite absorber and the charge-transporting layers has become an important method for improving the charge extraction and open-circuit voltage ( VOC) of hybrid perovskite solar cells. Conjugated polymers are particularly suited to form the hole-transporting layer, but their hydrophobicity renders it difficult to solution-process the perovskite absorber on top. Herein, oxygen plasma treatment is introduced as a simple means to change the surface energy and work function of hydrophobic polymer interlayers for use as p-contacts in perovskite solar cells. We find that upon oxygen plasma treatment, the hydrophobic surfaces of different prototypical p-type polymers became sufficiently hydrophilic to enable subsequent perovskite junction processing. In addition, the oxygen plasma treatment also increased the ionization potential of the polymer such that it became closer to the valance band energy of the perovskite. It was also found that the oxygen plasma treatment could increase the electrical conductivity of the p-type polymers, facilitating more efficient charge extraction. On the basis of this concept, inverted MAPbI3 perovskite devices with different oxygen plasma-treated polymers such as P3HT, P3OT, polyTPD, or PTAA were fabricated with power conversion efficiencies of up to 19%.

9.
PLoS One ; 11(10): e0164670, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741313

RESUMO

A series of 14 mesoporous titania materials has been synthesized using the simple alcothermal template-free method and various alcohols, such as methanol, propanols and butanols, as solvents. All materials were characterized by both wide and small angle XRD, which exhibited the anatase phase with short-range ordered mesoporous structure that is still forming during post synthetic temperature treatment in most of the investigated materials. Nitrogen adsorption-desorption isotherms confirmed the mesoporous structure with surface area ranging from 241 to 383 m2g- 1 and pore volumes from 0.162 to 0.473 m3g-1, UV-Vis diffuse reflectance showed the redshift of the absorption edge and the bandgap decrease after post synthetic calcination of the materials presented. The TEM, FT-IR, DTA and TG measurements have been made to well characterize the materials synthesized. The mesoporous samples obtained were applied as anode materials for dye-sensitized solar cells and showed good activity in photon-to-current conversion process with efficiency values ranging from 0.54% to 4.6% and fill factors in the 52% to 67% range. The photovoltaic performances were not as high as those obtained for the materials synthesized by us earlier employing ethanol as a solvent. The differences in the electron lifetime, calculated from electrochemical impedance spectroscopy results and varying between 4.3 to 17.5 ms, were found as a main factor determining the efficiency of the investigated photovoltaic cells.


Assuntos
Energia Solar , Solventes/química , Titânio/química , Adsorção , Álcoois/química , Corantes/química , Microscopia Eletrônica de Transmissão , Nitrogênio/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
10.
ChemSusChem ; 8(18): 3118-28, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26239025

RESUMO

Comprehensive studies of all charge-separation processes in efficient carbazole dye-sensitized solar cells are correlated with their photovoltaic parameters. An important role of partial, fast electron recombination from the semiconductor nanoparticles to the oxidized dye is revealed; this takes place on the picosecond and sub-nanosecond timescales. The charge-transfer dynamics in cobalt tris(bipyridyl) based electrolytes and iodide-based electrolyte is observed to depend on potential-determining additives in a similar way. Upon addition of 0.5 M 4-tert-butylpiridine to both types of electrolytes, the stability of the cells is greatly improved; the cell photovoltage increases by 150-200 mV, the electron injection rate decreases about five times (from 5 to 1 ps(-1) ), and fast recombination slows down about two to three times. Dye regeneration proceeds at a rate of about 1 µs(-1) in all electrolytes. Electron recombination from titania to cobalt electrolytes is much faster than that to iodide ones.


Assuntos
Carbazóis/química , Cobalto/química , Corantes/química , Fontes de Energia Elétrica , Iodetos/química , Energia Solar , Absorção Fisico-Química , Eletrólitos/química , Cinética , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA