Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Curr Opin Hematol ; 31(3): 96-103, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415760

RESUMO

PURPOSE OF REVIEW: Recent work reveals that cell cycle duration and structure are remodeled in lock-step with distinct stages of erythroid differentiation. These cell cycle features have regulatory roles in differentiation, beyond the generic function of increasing cell number. RECENT FINDINGS: Developmental progression through the early erythroid progenitor stage (known as colony-forming-erythroid, or 'CFU-e') is characterized by gradual shortening of G1 phase of the cycle. This process culminates in a key transcriptional switch to erythroid terminal differentiation (ETD) that is synchronized with, and dependent on, S phase progression. Further, the CFU-e/ETD switch takes place during an unusually short S phase, part of an exceptionally short cell cycle that is characterized by globally fast replication fork speeds. Cell cycle and S phase speed can alter developmental events during erythroid differentiation, through pathways that are targeted by glucocorticoid and erythropoietin signaling during the erythroid stress response. SUMMARY: There is close inter-dependence between cell cycle structure and duration, S phase and replication fork speeds, and erythroid differentiation stage. Further, modulation of cell cycle structure and speed cycle impacts developmental progression and cell fate decisions during erythroid differentiation. These pathways may offer novel mechanistic insights and potential therapeutic targets.


Assuntos
Células Precursoras Eritroides , Transdução de Sinais , Humanos , Ciclo Celular/fisiologia , Diferenciação Celular , Fase S , Eritropoese/fisiologia
2.
Nature ; 555(7694): 54-60, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29466336

RESUMO

The formation of red blood cells begins with the differentiation of multipotent haematopoietic progenitors. Reconstructing the steps of this differentiation represents a general challenge in stem-cell biology. Here we used single-cell transcriptomics, fate assays and a theory that allows the prediction of cell fates from population snapshots to demonstrate that mouse haematopoietic progenitors differentiate through a continuous, hierarchical structure into seven blood lineages. We uncovered coupling between the erythroid and the basophil or mast cell fates, a global haematopoietic response to erythroid stress and novel growth factor receptors that regulate erythropoiesis. We defined a flow cytometry sorting strategy to purify early stages of erythroid differentiation, completely isolating classically defined burst-forming and colony-forming progenitors. We also found that the cell cycle is progressively remodelled during erythroid development and during a sharp transcriptional switch that ends the colony-forming progenitor stage and activates terminal differentiation. Our work showcases the utility of linking transcriptomic data to predictive fate models, and provides insights into lineage development in vivo.


Assuntos
Eritrócitos/citologia , Células Precursoras Eritroides/citologia , Eritropoese , Animais , Basófilos/citologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Células Precursoras Eritroides/efeitos dos fármacos , Células Precursoras Eritroides/metabolismo , Eritropoese/efeitos dos fármacos , Feminino , Citometria de Fluxo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Mastócitos/citologia , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , RNA Citoplasmático Pequeno/análise , RNA Citoplasmático Pequeno/genética , Análise de Célula Única , Transcriptoma
3.
Proc Natl Acad Sci U S A ; 115(10): E2467-E2476, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463712

RESUMO

Single-cell expression profiling reveals the molecular states of individual cells with unprecedented detail. Because these methods destroy cells in the process of analysis, they cannot measure how gene expression changes over time. However, some information on dynamics is present in the data: the continuum of molecular states in the population can reflect the trajectory of a typical cell. Many methods for extracting single-cell dynamics from population data have been proposed. However, all such attempts face a common limitation: for any measured distribution of cell states, there are multiple dynamics that could give rise to it, and by extension, multiple possibilities for underlying mechanisms of gene regulation. Here, we describe the aspects of gene expression dynamics that cannot be inferred from a static snapshot alone and identify assumptions necessary to constrain a unique solution for cell dynamics from static snapshots. We translate these constraints into a practical algorithmic approach, population balance analysis (PBA), which makes use of a method from spectral graph theory to solve a class of high-dimensional differential equations. We use simulations to show the strengths and limitations of PBA, and then apply it to single-cell profiles of hematopoietic progenitor cells (HPCs). Cell state predictions from this analysis agree with HPC fate assays reported in several papers over the past two decades. By highlighting the fundamental limits on dynamic inference faced by any method, our framework provides a rigorous basis for dynamic interpretation of a gene expression continuum and clarifies best experimental designs for trajectory reconstruction from static snapshot measurements.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Algoritmos , Animais , Hematopoese , Células-Tronco Hematopoéticas/citologia , Camundongos , Análise de Célula Única
4.
PLoS Biol ; 10(8): e1001383, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22969412

RESUMO

Erythropoietin (Epo)-induced Stat5 phosphorylation (p-Stat5) is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic) erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital) p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog) p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a "knocked-in" EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the binary and graded modalities combine to generate high-fidelity Stat5 signaling over the entire basal and stress Epo range. They suggest that dynamic behavior may encode information during STAT signal transduction.


Assuntos
Eritropoese , Modelos Biológicos , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Estresse Fisiológico , Anemia/patologia , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Diferenciação Celular , Células Cultivadas , Eritroblastos/metabolismo , Feto/metabolismo , Citometria de Fluxo , Fígado/embriologia , Fígado/metabolismo , Camundongos , Fosforilação , Receptores da Eritropoetina/metabolismo , Receptores da Transferrina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Regulação para Cima
5.
Blood ; 119(5): 1228-39, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22086418

RESUMO

Survival signaling by the erythropoietin (Epo) receptor (EpoR) is essential for erythropoiesis and for its acceleration in hypoxic stress. Several apparently redundant EpoR survival pathways were identified in vitro, raising the possibility of their functional specialization in vivo. Here we used mouse models of acute and chronic stress, including a hypoxic environment and ß-thalassemia, to identify two markedly different response dynamics for two erythroblast survival pathways in vivo. Induction of the antiapoptotic protein Bcl-x(L) is rapid but transient, while suppression of the proapoptotic protein Bim is slower but persistent. Similar to sensory adaptation, however, the Bcl-x(L) pathway "resets," allowing it to respond afresh to acute stress superimposed on a chronic stress stimulus. Using "knock-in" mouse models expressing mutant EpoRs, we found that adaptation in the Bcl-x(L) response occurs because of adaptation of its upstream regulator Stat5, both requiring the EpoR distal cytoplasmic domain. We conclude that survival pathways show previously unsuspected functional specialization for the acute and chronic phases of the stress response. Bcl-x(L) induction provides a "stop-gap" in acute stress, until slower but permanent pathways are activated. Furthermore, pathologic elevation of Bcl-x(L) may be the result of impaired adaptation, with implications for myeloproliferative disease mechanisms.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Células Precursoras Eritroides/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteína bcl-X/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Sobrevivência Celular/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Eritropoese/fisiologia , Fígado/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fator de Transcrição STAT5/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
6.
Adv Exp Med Biol ; 844: 37-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25480636

RESUMO

Erythropoiesis is regulated through a long-range negative feedback loop, whereby tissue hypoxia stimulates erythropoietin (Epo) secretion, which promotes an increase in erythropoietic rate. However, this long-range feedback loop, by itself, cannot account for the observed system properties of erythropoiesis, namely, a wide dynamic range, stability in the face of random perturbations, and a rapid stress response. Here, we show that three Epo-regulated erythroblast survival pathways each give rise to distinct system properties. The induction of Bcl-xL by signal transducer and activator of transcription 5 (Stat5) is responsive to the rate of change in Epo levels, rather than to its absolute level, and is therefore maximally but transiently activated in acute stress. By contrast, Epo-mediated suppression of the pro-survival Fas and Bim pathways is proportional to the levels of stress/Epo and persists throughout chronic stress. Together, these elements operate in a manner reminiscent of a "proportional-integral-derivative (PID)" feedback controller frequently found in engineering applications. A short-range negative autoregulatory loop within the early erythroblast compartment, operated by Fas/FasL, filters out random noise and controls a reserve pool of early erythroblasts that is poised to accelerate the response to acute stress. Both these properties have previously been identified as inherent to negative regulatory motifs. Finally, we show that signal transduction by Stat5 combines binary and graded modalities, thereby increasing signaling fidelity over the wide dynamic range of Epo found in health and disease.


Assuntos
Eritropoese/fisiologia , Animais , Diferenciação Celular/genética , Sobrevivência Celular/genética , Eritroblastos/fisiologia , Eritropoetina/fisiologia , Retroalimentação Fisiológica , Humanos , Oxigênio/metabolismo , Transdução de Sinais/genética , Biologia de Sistemas
7.
PLoS Biol ; 8(9)2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20877475

RESUMO

Hematopoietic progenitors undergo differentiation while navigating several cell division cycles, but it is unknown whether these two processes are coupled. We addressed this question by studying erythropoiesis in mouse fetal liver in vivo. We found that the initial upregulation of cell surface CD71 identifies developmentally matched erythroblasts that are tightly synchronized in S-phase. We show that DNA replication within this but not subsequent cycles is required for a differentiation switch comprising rapid and simultaneous committal transitions whose precise timing was previously unknown. These include the onset of erythropoietin dependence, activation of the erythroid master transcriptional regulator GATA-1, and a switch to an active chromatin conformation at the ß-globin locus. Specifically, S-phase progression is required for the formation of DNase I hypersensitive sites and for DNA demethylation at this locus. Mechanistically, we show that S-phase progression during this key committal step is dependent on downregulation of the cyclin-dependent kinase p57(KIP2) and in turn causes the downregulation of PU.1, an antagonist of GATA-1 function. These findings therefore highlight a novel role for a cyclin-dependent kinase inhibitor in differentiation, distinct to their known function in cell cycle exit. Furthermore, we show that a novel, mutual inhibition between PU.1 expression and S-phase progression provides a "synchromesh" mechanism that "locks" the erythroid differentiation program to the cell cycle clock, ensuring precise coordination of critical differentiation events.


Assuntos
Ciclo Celular , Eritropoese , Proteínas Proto-Oncogênicas/metabolismo , Fase S , Transativadores/metabolismo , Animais , Antígenos CD/metabolismo , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Metilação de DNA , Replicação do DNA , Regulação para Baixo , Camundongos , Receptores da Transferrina/metabolismo
8.
J Biol Chem ; 286(19): 16758-67, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454573

RESUMO

Survivin is a multifunctional protein with essential roles in cell division and inhibition of apoptosis, but the molecular underpinnings of its cytoprotective properties are poorly understood. Here we show that homozygous deletion of the aryl hydrocarbon receptor-interacting protein (AIP), a survivin-associated immunophilin, causes embryonic lethality in mice by embryonic day 13.5-14, increased apoptosis of Ter119(-)/CD71(-) early erythropoietic progenitors, and loss of survivin expression in its cytosolic and mitochondrial compartments in vivo. In import assays using recombinant proteins, AIP directly mediated the import of survivin to mitochondria, thus enabling its anti-apoptotic function, whereas a survivin 1-141 mutant that does not bind AIP was not imported to mitochondria and failed to inhibit apoptosis. AIP-directed mitochondrial import of survivin did not affect cell division, was independent of the organelle transmembrane potential, did not require the chaperone Heat Shock Protein 90 (Hsp90), and was inhibited by cytosolic factor(s) present in normal cells. shRNA knockdown of the mitochondrial import receptor Tom20 abolished mitochondrial import of survivin and sensitized tumor cells to apoptosis, whereas silencing of Tom70 had no effect. Therefore, an AIP-Tom20 recognition contributes to cell survival in development and cancer by mediating the mitochondrial import of survivin.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Animais , Transporte Biológico , Citosol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Survivina , Fatores de Tempo
9.
Int J Hematol ; 116(2): 163-173, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759181

RESUMO

Early erythroid progenitors known as CFU-e undergo multiple self-renewal cell cycles. The CFU-e developmental stage ends with the onset of erythroid terminal differentiation (ETD). The transition from CFU-e to ETD is a critical cell fate decision that determines erythropoietic rate. Here we review recent insights into the regulation of this transition, garnered from flow cytometric and single-cell RNA sequencing studies. We find that the CFU-e/ETD transition is a rapid S phase-dependent transcriptional switch. It takes place during an S phase that is much shorter than in preceding or subsequent cycles, as a result of globally faster replication forks. Furthermore, it is preceded by cycles in which G1 becomes gradually shorter. These dramatic cell cycle and S phase remodeling events are directly linked to regulation of the CFU-e/ETD switch. Moreover, regulators of erythropoietic rate exert their effects by modulating cell cycle duration and S phase speed. Glucocorticoids increase erythropoietic rate by inducing the CDK inhibitor p57KIP2, which slows replication forks, inhibiting the CFU-e/ETD switch. Conversely, erythropoietin promotes induction of ETD by shortening the cycle. S phase shortening was reported during cell fate decisions in non-erythroid lineages, suggesting a fundamentally new developmental role for cell cycle speed.


Assuntos
Células Precursoras Eritroides , Eritropoetina , Ciclo Celular/genética , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/farmacologia , Eritropoese/genética , Eritropoetina/farmacologia , Humanos , Análise de Sequência de RNA
10.
J Vis Exp ; (189)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36408979

RESUMO

Early erythroid progenitors were originally defined by their colony-forming potential in vitro and classified into burst-forming and colony-forming "units" known as BFU-e and CFU-e. Until recently, methods for the direct prospective and complete isolation of pure BFU-e and CFU-e progenitors from freshly isolated adult mouse bone marrow were not available. To address this gap, a single-cell RNA-seq (scRNAseq) dataset of mouse bone marrow was analyzed for the expression of genes coding for cell surface markers. This analysis was combined with cell fate assays, allowing the development of a novel flow cytometric approach that identifies and allows the isolation of complete and pure subsets of BFU-e and CFU-e progenitors in mouse bone marrow or spleen. This approach also identifies other progenitor subsets, including subsets enriched for basophil/mast cell and megakaryocytic potentials. The method consists of labeling fresh bone marrow or spleen cells with antibodies directed at Kit and CD55. Progenitors that express both these markers are then subdivided into five principal populations. Population 1 (P1 or CFU-e, Kit+ CD55+ CD49fmed/low CD105med/high CD71med/high) contains all of the CFU-e progenitors and may be further subdivided into P1-low (CD71med CD150high) and P1-hi (CD71high CD150low), corresponding to early and late CFU-e, respectively; Population 2 (P2 or BFU-e, Kit+ CD55+ CD49fmed/low CD105med/high CD71low CD150high) contains all of the BFU-e progenitors; Population P3 (P3, Kit+ CD55+ CD49fmed/high CD105med/low CD150low CD41low) is enriched for basophil/mast cell progenitors; Population 4 (P4, Kit+ CD55+ CD49fmed/high CD105med/low CD150high CD41+) is enriched for megakaryocytic progenitors; and Population 5 (P5, Kit+ CD55+ CD49fmed/high CD105med/low CD150high CD41-) contains progenitors with erythroid, basophil/mast cell, and megakaryocytic potential (EBMP) and erythroid/ megakaryocytic/ basophil-biased multipotential progenitors (MPPs). This novel approach allows greater precision when analyzing erythroid and other hematopoietic progenitors and also allows for reference to transcriptome information for each flow cytometrically defined population.


Assuntos
Células Precursoras Eritroides , Células-Tronco , Camundongos , Animais , Citometria de Fluxo , Integrina alfa6 , Estudos Prospectivos
11.
WIREs Mech Dis ; 13(2): e1504, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32916032

RESUMO

Essentially all cell cycling in multicellular organisms in vivo takes place in the context of lineage differentiation. This notwithstanding, the regulation of the cell cycle is often assumed to be generic, independent of tissue or developmental stage. Here we review developmental-stage-specific cell cycle adaptations that may influence developmental decisions, in mammalian erythropoiesis and in other lineages. The length of the cell cycle influences the balance between self-renewal and differentiation in multiple tissues, and may determine lineage fate. Shorter cycles contribute to the efficiency of reprogramming somatic cells into induced pluripotency stem cells and help maintain the pluripotent state. While the plasticity of G1 length is well established, the speed of S phase is emerging as a novel regulated parameter that may influence cell fate transitions in the erythroid lineage, in neural tissue and in embryonic stem cells. A slow S phase may stabilize the self-renewal state, whereas S phase shortening may favor a cell fate change. In the erythroid lineage, functional approaches and single-cell RNA-sequencing show that a key transcriptional switch, at the transition from self-renewal to differentiation, is synchronized with and dependent on S phase. This specific S phase is shorter, as a result of a genome-wide increase in the speed of replication forks. Furthermore, there is progressive shortening in G1 in the period preceding this switch. Together these studies suggest an integrated regulatory landscape of the cycle and differentiation programs, where cell cycle adaptations are controlled by, and in turn feed back on, the propagation of developmental trajectories. This article is categorized under: Congenital Diseases > Stem Cells and Development.


Assuntos
Células-Tronco Embrionárias , Animais , Ciclo Celular , Diferenciação Celular , Divisão Celular , Fase S
12.
Nat Commun ; 12(1): 7334, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921133

RESUMO

The erythroid terminal differentiation program couples sequential cell divisions with progressive reductions in cell size. The erythropoietin receptor (EpoR) is essential for erythroblast survival, but its other functions are not well characterized. Here we use Epor-/- mouse erythroblasts endowed with survival signaling to identify novel non-redundant EpoR functions. We find that, paradoxically, EpoR signaling increases red cell size while also increasing the number and speed of erythroblast cell cycles. EpoR-regulation of cell size is independent of established red cell size regulation by iron. High erythropoietin (Epo) increases red cell size in wild-type mice and in human volunteers. The increase in mean corpuscular volume (MCV) outlasts the duration of Epo treatment and is not the result of increased reticulocyte number. Our work shows that EpoR signaling alters the relationship between cycling and cell size. Further, diagnostic interpretations of increased MCV should now include high Epo levels and hypoxic stress.


Assuntos
Ciclo Celular , Tamanho Celular , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritropoese , Receptores da Eritropoetina/metabolismo , Adulto , Animais , Antígenos CD/metabolismo , Antígenos CD4/metabolismo , Diferenciação Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Embrião de Mamíferos/metabolismo , Eritroblastos/citologia , Eritroblastos/efeitos dos fármacos , Eritroblastos/metabolismo , Eritropoetina/administração & dosagem , Eritropoetina/farmacologia , Feminino , Feto/metabolismo , Voluntários Saudáveis , Humanos , Ferro/metabolismo , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores da Transferrina/metabolismo , Reticulócitos/citologia , Reticulócitos/efeitos dos fármacos , Reticulócitos/metabolismo , Transdução de Sinais , Proteína bcl-X/metabolismo
13.
PLoS Biol ; 5(10): e252, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17896863

RESUMO

Tissue development is regulated by signaling networks that control developmental rate and determine ultimate tissue mass. Here we present a novel computational algorithm used to identify regulatory feedback and feedforward interactions between progenitors in developing erythroid tissue. The algorithm makes use of dynamic measurements of red cell progenitors between embryonic days 12 and 15 in the mouse. It selects for intercellular interactions that reproduce the erythroid developmental process and endow it with robustness to external perturbations. This analysis predicts that negative autoregulatory interactions arise between early erythroblasts of similar maturation stage. By studying embryos mutant for the death receptor FAS, or for its ligand, FASL, and by measuring the rate of FAS-mediated apoptosis in vivo, we show that FAS and FASL are pivotal negative regulators of fetal erythropoiesis, in the manner predicted by the computational model. We suggest that apoptosis in erythroid development mediates robust homeostasis regulating the number of red blood cells reaching maturity.


Assuntos
Eritrócitos/citologia , Eritropoese/fisiologia , Proteína Ligante Fas/metabolismo , Feto/metabolismo , Homeostase/fisiologia , Receptor fas/metabolismo , Algoritmos , Animais , Apoptose/fisiologia , Diferenciação Celular , Separação Celular , Eritrócitos/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Retroalimentação Fisiológica , Feto/embriologia , Citometria de Fluxo , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
14.
Dis Model Mech ; 13(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31836582

RESUMO

Translating basic research to the clinic is a primary aim of Disease Models & Mechanisms, and the recent successes in hematopoiesis research provide a blueprint of how fundamental biological research can provide solutions to important clinical problems. These advances were the main motivation for choosing hematopoiesis disorders as the focus of our inaugural meeting, 'Blood Disorders: Models, Mechanisms and Therapies', which was held in early October 2019. This Editorial discusses the reasons for and the challenges of interdisciplinary research in hematopoiesis, provides examples of how research in model systems is a key translational step towards effective treatments for blood disorders and summarizes what the community believes are the key exciting developments and challenges in this field.


Assuntos
Doenças Hematológicas/terapia , Hematopoese , Pesquisa Translacional Biomédica , Animais , Big Data , Modelos Animais de Doenças , Humanos
15.
Arthritis Rheumatol ; 72(2): 359-370, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31464028

RESUMO

OBJECTIVE: Patients with hypomorphic mutations in DNase II develop a severe and debilitating autoinflammatory disease. This study was undertaken to compare the disease parameters in these patients to those in a murine model of DNase II deficiency, and to evaluate the role of specific nucleic acid sensors and identify the cell types responsible for driving the autoinflammatory response. METHODS: To avoid embryonic death, Dnase2-/- mice were intercrossed with mice that lacked the type I interferon (IFN) receptor (Ifnar-/- ). The hematologic changes and immune status of these mice were evaluated using complete blood cell counts, flow cytometry, serum cytokine enzyme-linked immunosorbent assays, and liver histology. Effector cell activity was determined by transferring T cells from Dnase2-/- × Ifnar-/- double-knockout (DKO) mice into Rag1-/- mice, and 4 weeks after cell transfer, induced changes were assessed in the recipient mice. RESULTS: In Dnase2-/- × Ifnar-/- DKO mice, many of the disease features found in DNase II-deficient patients were recapitulated, including cytopenia, extramedullary hematopoiesis, and liver fibrosis. Dnase2+/+ × Rag1-/- mice (n > 22) developed a hematologic disorder that was attributed to the transfer of an unusual IFNγ-producing T cell subset from the spleens of donor Dnase2-/- × Ifnar-/- DKO mice. Autoinflammation in this murine model did not depend on the stimulator of IFN genes (STING) pathway but was highly dependent on the chaperone protein Unc93B1. CONCLUSION: Dnase2-/- × Ifnar-/- DKO mice may be a valid model for exploring the innate and adaptive immune mechanisms responsible for the autoinflammation similar to that seen in DNASE2-hypomorphic patients. In this murine model, IFNγ is required for T cell activation and the development of clinical manifestations. The role of IFNγ in DNASE2-deficient patient populations remains to be determined, but the ability of Dnase2-/- mouse T cells to transfer disease to Rag1-/- mice suggests that T cells may be a relevant therapeutic target in patients with IFN-related systemic autoinflammatory diseases.


Assuntos
Doenças Autoimunes/etiologia , Endodesoxirribonucleases/deficiência , Inflamação/imunologia , Interferon gama/biossíntese , Células Th1/metabolismo , Animais , Modelos Animais de Doenças , Interferon Tipo I , Camundongos , Camundongos Endogâmicos C57BL
16.
Nat Commun ; 11(1): 2722, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483172

RESUMO

Mammalian gene expression patterns are controlled by regulatory elements, which interact within topologically associating domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. Here, we present Tiled-C, a low-input chromosome conformation capture (3C) technique. We use this approach to study chromatin architecture at high spatial and temporal resolution through in vivo mouse erythroid differentiation. Integrated analysis of chromatin accessibility and single-cell expression data shows that regulatory elements gradually become accessible within pre-existing TADs during early differentiation. This is followed by structural re-organization within the TAD and formation of specific contacts between enhancers and promoters. Our high-resolution data show that these enhancer-promoter interactions are not established prior to gene expression, but formed gradually during differentiation, concomitant with progressive upregulation of gene activity. Together, these results provide new insight into the close, interdependent relationship between chromatin architecture and gene regulation during development.


Assuntos
Diferenciação Celular/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Regiões Promotoras Genéticas/genética , Células-Tronco/metabolismo , Animais , Células Cultivadas , Cromatina/genética , Cromossomos de Mamíferos/genética , Feminino , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco/citologia
17.
Exp Hematol ; 60: 21-29.e3, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29410050

RESUMO

The advent of single-cell transcriptomics has led to the proposal of a number of novel high-resolution models for the hematopoietic system. Testing the predictions generated by such models requires cell fate potential assays of matching, single-cell resolution. Here we detail the development of an in vitro high-throughput single-cell culture assay using flow cytometrically sorted single murine bone marrow progenitors, which measures their differentiation into any of five myeloid lineages. We identify critical parameters for single-cell culture outcome, including the choice of sorter nozzle size and pressure, culture media, and the coating of culture dishes with extracellular matrix proteins. Further, we find that accurate assay readout requires the titration of antibodies specifically for their use under low-cell-number conditions. Our approach may be used as a template for the development of single-cell fate potential assays for a variety of blood cell progenitors.


Assuntos
Técnicas de Cultura de Células/métodos , Perfilação da Expressão Gênica/métodos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
18.
Mol Cell Biol ; 23(15): 5256-68, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12861012

RESUMO

The product of the retinoblastoma tumor suppressor gene (Rb) can control cell proliferation and promote differentiation. Murine embryos nullizygous for Rb die midgestation with defects in cell cycle regulation, control of apoptosis, and terminal differentiation of several tissues, including skeletal muscle, nervous system, and lens. Previous cell culture-based experiments have suggested that the retinoblastoma protein (pRb) and Ras operate in a common pathway to control cellular differentiation. Here we have tested the hypothesis that the proto-oncogene N-ras participates in Rb-dependent regulation of differentiation by generating and characterizing murine embryos deficient in both N-ras and Rb. We show that deletion of N-ras rescues a unique subset of the developmental defects associated with nullizygosity of Rb, resulting in a significant extension of life span. Rb(-/-); N-ras(-/-) skeletal muscle has normal fiber density, myotube length and thickness, in contrast to Rb-deficient embryos. Additionally, Rb(-/-); N-ras(-/-) muscle shows a restoration in the expression of the late muscle-specific gene MCK, and this correlates with a significant potentiation of MyoD transcriptional activity in Rb(-/-); N-ras(-/-), compared to Rb(-/-) myoblasts in culture. The improved differentiation of skeletal muscle in Rb(-/-); N-ras(-/-) embryos occurs despite evidence of deregulated proliferation and apoptosis, as seen in Rb-deficient animals. Our findings suggest that the control of differentiation and proliferation by Rb are genetically separable.


Assuntos
Genes ras/genética , Proteína do Retinoblastoma/fisiologia , Proteínas ras/fisiologia , Animais , Apoptose , Ciclo Celular , Diferenciação Celular , Divisão Celular , Células Cultivadas , Sistema Nervoso Central/embriologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Coração/embriologia , Imuno-Histoquímica , Pulmão/embriologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , RNA/metabolismo , Fase S , Transdução de Sinais , Fatores de Tempo , Transcrição Gênica , Ativação Transcricional
19.
Sci Adv ; 3(5): e1700298, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560351

RESUMO

Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase-dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions.


Assuntos
Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Replicação do DNA/fisiologia , Células Eritroides/metabolismo , Fase S/fisiologia , Animais , Inibidor de Quinase Dependente de Ciclina p57/genética , Células Eritroides/citologia , Feminino , Camundongos , Camundongos Mutantes , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA