Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203785

RESUMO

Propolis is a natural resin produced by honeybees with plenty of pharmacologic properties, including antioxidant activity. Oxidative stress disrupts germ cell development and sperm function, with demonstrated harmful effects on male reproduction. Several natural antioxidants have been shown to reduce oxidative damage and increase sperm fertility potential; however, little is known about the effects of propolis. This work evaluated the role of propolis in protecting spermatogonial cells from oxidative damage. Propolis' phytochemical composition and antioxidant potential were determined, and mouse GC-1spg spermatogonial cells were treated with 0.1-500 µg/mL propolis (12-48 h) in the presence or absence of an oxidant stimulus (tert-butyl hydroperoxide, TBHP, 0.005-3.6 µg/mL, 12 h). Cytotoxicity was assessed by MTT assays and proliferation by Ki-67 immunocytochemistry. Apoptosis, reactive oxygen species (ROS), and antioxidant defenses were evaluated colorimetrically. Propolis presented high phenolic and flavonoid content and moderate antioxidant activity, increasing the viability of GC-1spg cells and counteracting TBHP's effects on viability and proliferation. Additionally, propolis reduced ROS levels in GC-1spg, regardless of the presence of TBHP. Propolis decreased caspase-3 and increased glutathione peroxidase activity in TBHP-treated GC-1spg cells. The present study shows the protective action of propolis against oxidative damage in spermatogonia, opening the possibility of exploiting its benefits to male fertility.


Assuntos
Ascomicetos , Própole , Masculino , Abelhas , Animais , Camundongos , Espermatogônias , Antioxidantes/farmacologia , Própole/farmacologia , terc-Butil Hidroperóxido/toxicidade , Espécies Reativas de Oxigênio , Sementes , Estresse Oxidativo
2.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047621

RESUMO

The Six Transmembrane Epithelial Antigen of the Prostate 1 (STEAP1) protein has been indicated as an overexpressed oncoprotein in prostate cancer (PCa), associated with tumor progression and aggressiveness. Taxane-based antineoplastic drugs such as paclitaxel, docetaxel, or cabazitaxel, have been investigated in PCa treatment, namely for the development of combined therapies with the improvement of therapeutic effectiveness. This study aimed to evaluate the expression of STEAP1 in response to taxane-based drugs and assess whether the sensitivity of PCa cells to treatment with paclitaxel, docetaxel, or cabazitaxel may change when the STEAP1 gene is silenced. Thus, wild-type and STEAP1 knockdown LNCaP and C4-2B cells were exposed to paclitaxel, docetaxel or cabazitaxel, and STEAP1 expression, cell viability, and survival pathways were evaluated. The results obtained showed that STEAP1 knockdown or taxane-based drugs treatment significantly reduced the viability and survival of PCa cells. Relatively to the expression of proliferation markers and apoptosis regulators, LNCaP cells showed a reduced proliferation, whereas apoptosis was increased. However, the effect of paclitaxel, docetaxel, or cabazitaxel treatment was reversed when combined with STEAP1 knockdown. Besides, these chemotherapeutic drugs may stimulate the cell growth of PCa cells knocked down for STEAP1. In conclusion, this study demonstrated that STEAP1 expression levels might influence the response of PCa cells to chemotherapeutics drugs, indicating that the use of paclitaxel, docetaxel, or cabazitaxel may lead to harmful effects in PCa cells with decreased expression of STEAP1.


Assuntos
Antineoplásicos , Neoplasias da Próstata , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Próstata/patologia , Linhagem Celular Tumoral , Taxoides/farmacologia , Taxoides/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos de Neoplasias/uso terapêutico , Oxirredutases
3.
Med Res Rev ; 41(3): 1499-1538, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33274768

RESUMO

Prostate cancer (PCa), one of the most commonly diagnosed cancers worldwide, still presents important unmet clinical needs concerning treatment. In the last years, the metabolic reprogramming and the specificities of tumor cells emerged as an exciting field for cancer therapy. The unique features of PCa cells metabolism, and the activation of specific metabolic pathways, propelled the use of metabolic inhibitors for treatment. The present work revises the knowledge of PCa metabolism and the metabolic alterations that underlie the development and progression of the disease. A focus is given to the role of bioenergetic sources, namely, glucose, lipids, and glutamine sustaining PCa cell survival and growth. Moreover, it is described as the action of oncogenes/tumor suppressors and sex steroid hormones in the metabolic reprogramming of PCa. Finally, the status of PCa treatment based on the inhibition of metabolic pathways is presented. Globally, this review updates the landscape of PCa metabolism, highlighting the critical metabolic alterations that could have a clinical and therapeutic interest.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Redes e Vias Metabólicas , Oncogenes , Neoplasias da Próstata/tratamento farmacológico
4.
Biol Reprod ; 104(5): 962-975, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33524106

RESUMO

Endocrine-disrupting chemicals have become an issue of scientific and public discussion. Vinclozolin (VNZ) is a fungicide that competitively antagonizes the binding of natural androgens to their receptor, disturbing the function of tissues that are sensitive to these hormones, as is the case of the male reproductive organs. A systematic review with meta-analyses of rodent studies was conducted to answer the following question: Does exposure to VNZ affect sperm parameters and testicular/epididymal weight? The methodology was prespecified according to the Cochrane Handbook for Systematic Reviews and PRISMA recommendations. Sixteen articles met the inclusion criteria, comprising a total of 1189 animals. The risk of publication bias was assessed using the Trim and Fill adjustment, funnel plot, and Egger regression test. Heterogeneity and inconsistency across the findings were tested using the Q-statistic and I2 of Higgins, respectively. Sensitivity was also analyzed. Statistical analysis was performed on Comprehensive Meta-Analysis software (Version 2.0), using random models and weighted mean differences along with a 95% confidence interval. Sperm motility, counts, daily sperm production (evidence of publication bias), and epididymis weight were decreased in VNZ-treated animals. Exposure length and dose, as well as the time point of exposure, influenced the obtained results. Despite the moderate/high heterogeneity observed, the sensitivity analysis overall demonstrated the robustness of the findings. The quality scores of the included studies were superior to 4 in a total of 9, then classified as good. The obtained data corroborate the capability of VNZ exposure to disrupt spermatogenic output and compromise male fertility.


Assuntos
Disruptores Endócrinos/farmacologia , Oxazóis/farmacologia , Reprodução/efeitos dos fármacos , Animais , Masculino , Camundongos , Ratos
5.
Sensors (Basel) ; 21(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34770321

RESUMO

The fast spread of SARS-CoV-2 has led to a global pandemic, calling for fast and accurate assays to allow infection diagnosis and prevention of transmission. We aimed to develop a molecular beacon (MB)-based detection assay for SARS-CoV-2, designed to detect the ORF1ab and S genes, proposing a two-stage COVID-19 testing strategy. The novelty of this work lies in the design and optimization of two MBs for detection of SARS-CoV-2, namely, concentration, fluorescence plateaus of hybridization, reaction temperature and real-time results. We also identify putative G-quadruplex (G4) regions in the genome of SARS-CoV-2. A total of 458 nasopharyngeal and throat swab samples (426 positive and 32 negative) were tested with the MB assay and the fluorescence levels compared with the cycle threshold (Ct) values obtained from a commercial RT-PCR test in terms of test duration, sensitivity, and specificity. Our results show that the samples with higher fluorescence levels correspond to those with low Ct values, suggesting a correlation between viral load and increased MB fluorescence. The proposed assay represents a fast (total duration of 2 h 20 min including amplification and fluorescence reading stages) and simple way of detecting SARS-CoV-2 in clinical samples from the upper respiratory tract.


Assuntos
COVID-19 , SARS-CoV-2 , Teste para COVID-19 , Humanos , Pandemias , RNA Viral , Sensibilidade e Especificidade
6.
Molecules ; 26(10)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063349

RESUMO

Sweet cherries (Prunus avium L.) are among the most appreciated fruits worldwide because of their organoleptic properties and nutritional value. The accurate phytochemical composition and nutritional value of sweet cherries depends on the climatic region, cultivar, and bioaccessibility and bioavailability of specific compounds. Nevertheless, sweet cherry extracts are highly enriched in several phenolic compounds with relevant bioactivity. Over the years, technological advances in chemical analysis and fields as varied as proteomics, genomics and bioinformatics, have allowed the detailed characterization of the sweet cherry bioactive phytonutrients and their biological function. In this context, the effect of sweet cherries on suppressing important events in the carcinogenic process, such as oxidative stress and inflammation, was widely documented. Interestingly, results from our research group and others have widened the action of sweet cherries to many hallmarks of cancer, namely metabolic reprogramming. The present review discusses the anticarcinogenic potential of sweet cherries by addressing their phytochemical composition, the bioaccessibility and bioavailability of specific bioactive compounds, and the existing knowledge concerning the effects against oxidative stress, chronic inflammation, deregulated cell proliferation and apoptosis, invasion and metastization, and metabolic alterations. Globally, this review highlights the prospective use of sweet cherries as a dietary supplement or in cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/química , Compostos Fitoquímicos/química , Prunus avium/química , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Humanos , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia
7.
Nutr Cancer ; 72(6): 917-931, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31507215

RESUMO

The present work evaluated the anticancer properties of sweet cherry (Prunus avium) extract on human prostate cells. Several sweet cherry cultivars from Fundão (Portugal) were methanol-extracted and their phytochemical composition characterized. The Saco "late harvest" extract was highly-enriched in anthocyanins and selected for use in biological assays. Non-neoplastic (PNT1A) and neoplastic (LNCaP and PC3) human prostate cells were treated with 0-2,000 µg/ml of extract for 48-96 h. Cell viability was evaluated by the MTT assay. Apoptosis, oxidative stress, and glycolytic metabolism were assessed by Western blotting and enzymatic assays. Glucose consumption and lactate production were measured spectrophotometrically. Saco cherry extract diminished the viability of neoplastic and non-neoplastic cells, whereas enhancing apoptosis in LNCaP. Cherry extract-treatment also diminished oxidative damage and suppressed glycolytic metabolism in LNCaP cells. These findings widened the knowledge on the mechanisms by which cherry extract modulate cell physiology, demonstrating their broad action over the hallmarks of cancer.


Assuntos
Neoplasias , Prunus avium , Antocianinas/farmacologia , Apoptose , Humanos , Masculino , Próstata
8.
J Appl Toxicol ; 37(2): 159-166, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27109168

RESUMO

Regucalcin (RGN) is a calcium (Ca2+ )-binding protein with multiple physiological roles and has also been linked to the suppression of oxidative stress. It is widely known that oxidative stress adversely affects spermatogenesis, disrupting the development of germ cells, and interfering with sperm function. The present study aims to analyze the role of RGN modulating testicular oxidative stress. To address this issue, seminiferous tubules (SeT) from transgenic rats overexpressing RGN (Tg-RGN) and wild-type (WT) were cultured ex vivo for 24 h in the presence/absence of pro-oxidant stimuli, tert-butyl hydroperoxide (TBHP, 250 and 500 µM) and cadmium chloride (Cd, 10 and 20 µM). Noteworthy, SeT from Tg-RGN animals displayed a significantly higher antioxidant capacity and diminished levels of thiobarbituric acid reactive substances relatively to their WT counterparts, both in control and experimental conditions. Regarding the antioxidant defense systems, a significant increase in the activity of glutathione-S-transferase was found in the SeT of Tg-RGN whereas no differences were observed in superoxide dismutase activity throughout experimental conditions. The activity of apoptosis executioner caspase-3 was significantly increased in the SeT of WT rats treated with 250 µM of TBHP or 10 µM of Cd, an effect not seen in Tg-RGN animals. These results showed that the SeT of Tg-RGN animals displayed lower levels of oxidative stress and increased antioxidant defenses, exhibiting protection against oxidative damage and apoptosis. Moreover, the present findings support the antioxidant role of RGN in spermatogenesis, which may be an important issue of further research in the context of male infertility. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cádmio/toxicidade , Proteínas de Ligação ao Cálcio/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , terc-Butil Hidroperóxido/toxicidade , Animais , Antioxidantes/metabolismo , Proteínas de Ligação ao Cálcio/genética , Hidrolases de Éster Carboxílico , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Ratos Sprague-Dawley , Ratos Transgênicos , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/metabolismo , Testículo/metabolismo
9.
Biochim Biophys Acta ; 1853(10 Pt A): 2621-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26171977

RESUMO

Extracellular calcium (Ca2+o) and its receptor, the Ca2+-sensing receptor (CaSR), play an important role in prostate physiology, and it has been shown that the deregulation of Ca2+ homeostasis and the overexpression of CaSR are involved in prostate cancer (PCa). Regucalcin (RGN), a Ca2+-binding protein that plays a relevant role in intracellular Ca2+ homeostasis, was identified as an under-expressed protein in human PCa. Moreover, RGN was associated with suppression of cell proliferation, suggesting that the loss of RGN may favor development and progression of PCa. This work aims to unveil the role of Ca2+o on RGN expression and viability of non-neoplastic (PNT1A) and neoplastic (LNCaP) prostate cell lines. It was demonstrated that Ca2+o up-regulates RGN expression in both cell lines, but important differences were found between cells for dose- and time-responses to Ca2+o treatment. It was also shown that high [Ca2+]o triggers different effects on cell proliferation of neoplastic and non-neoplastic PCa cells, which seems to be related with RGN expression levels. This suggests the involvement of RGN in the regulation of cell proliferation in response to Ca2+o treatment. Also, the effect of Ca2+o on CaSR expression seems to be dependent of RGN expression, which is strengthened by the fact that RGN-knockdown in PNT1A cells increases the CaSR expression, whereas transgenic rats overexpressing RGN exhibit low levels of CaSR. Overall, our results highlighted the importance of RGN as a regulatory protein in Ca2+-dependent signaling pathways and its deregulation of RGN expression by Ca2+o may contribute for onset and progression of PCa.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/biossíntese , Cálcio , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Cálcio/metabolismo , Cálcio/farmacologia , Sinalização do Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Hidrolases de Éster Carboxílico , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/biossíntese , Receptores de Detecção de Cálcio/genética
10.
Transgenic Res ; 25(2): 139-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26553531

RESUMO

Regucalcin (RGN) is a calcium-binding protein underexpressed in human prostate cancer cases, and it has been associated with the suppression of cell proliferation and the regulation of several metabolic pathways. On the other hand, it is known that the metabolic reprogramming with augmented glycolytic metabolism and enhanced proliferative capability is a characteristic of prostate cancer cells. The present study investigated the influence of RGN on the glycolytic metabolism of rat prostate by comparing transgenic adult animals overexpressing RGN (Tg-RGN) with their wild-type counterparts. Glucose consumption was significantly decreased in the prostate of Tg-RGN animals relatively to wild-type, and accompanied by the diminished expression of glucose transporter 3 and glycolytic enzyme phosphofructokinase. Also, prostates of Tg-RGN animals displayed lower lactate levels, which resulted from the diminished expression/activity of lactate dehydrogenase. The expression of the monocarboxylate transporter 4 responsible for the export of lactate to the extracellular space was also diminished with RGN overexpression. These results showed the effect of RGN in inhibiting the glycolytic metabolism in rat prostate, which was underpinned by a reduced cell proliferation index. The present findings also suggest that the loss of RGN may predispose to a hyper glycolytic profile and fostered proliferation of prostate cells.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proliferação de Células/genética , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Próstata/metabolismo , Animais , Apoptose/genética , Proteínas de Ligação ao Cálcio/biossíntese , Hidrolases de Éster Carboxílico , Regulação da Expressão Gênica , Glucose/genética , Transportador de Glucose Tipo 3/biossíntese , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Masculino , Transportadores de Ácidos Monocarboxílicos/biossíntese , Proteínas Musculares/biossíntese , Fosfofrutoquinase-1/biossíntese , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ratos , Ratos Transgênicos
11.
Exp Cell Res ; 330(2): 325-335, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128811

RESUMO

Regucalcin (RGN) is a calcium-binding protein, which has been shown to be underexpressed in cancer cases. This study aimed to determine the association of RGN expression with clinicopathological parameters of human breast cancer. In addition, the role of RGN in malignancy of mammary gland using transgenic rats overexpressing the protein (Tg-RGN) was investigated. Wild-type (Wt) and Tg-RGN rats were treated with 7,12-dimethylbenz[α]anthracene (DMBA). Carcinogen-induced tumors were histologically classified and the Ki67 proliferation index was estimated. Immunohistochemistry analysis showed that RGN immunoreactivity was negatively correlated with the histological grade of breast infiltrating ductal carcinoma suggesting that progression of breast cancer is associated with loss of RGN. Tg-RGN rats displayed lower incidence of carcinogen-induced mammary gland tumors, as well as lower incidence of invasive forms. Moreover, higher proliferation was observed in non-invasive tumors of Wt animals comparatively with Tg-RGN. Overexpression of RGN was associated with diminished expression of cell-cycle inhibitors and increased expression of apoptosis inducers. Augmented activity of apoptosis effector caspase-3 was found in the mammary gland of Tg-RGN. RGN overexpression protected from carcinogen-induced mammary gland tumor development and was linked with reduced proliferation and increased apoptosis. These findings indicated the protective role of RGN in the carcinogenesis of mammary gland.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/biossíntese , Carcinogênese/genética , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Glândulas Mamárias Animais/patologia , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Animais , Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Carcinógenos/farmacologia , Caspase 3/biossíntese , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos
12.
Biochim Biophys Acta ; 1837(3): 335-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361842

RESUMO

Pre-diabetes, a risk factor for type 2 diabetes development, leads to metabolic changes at testicular level. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) and Sirtuin 3 (Sirt3) are pivotal in mitochondrial function. We hypothesized that pre-diabetes disrupts testicular PGC-1α/Sirt3 axis, compromising testicular mitochondrial function. Using a high-energy-diet induced pre-diabetic rat model, we evaluated testicular levels of PGC-1α and its downstream targets, nuclear respiratory factors 1 (NRF-1) and 2 (NRF-2), mitochondrial transcription factor A (TFAM) and Sirt3. We also assessed mitochondrial DNA (mtDNA) content, mitochondrial function, energy levels and oxidative stress parameters. Protein levels were quantified by Western Blot, mtDNA content was determined by qPCR. Mitochondrial complex activity and oxidative stress parameters were spectrophotometrically evaluated. Adenine nucleotide levels, adenosine and its metabolites (inosine and hypoxanthine) were determined by reverse-phase HPLC. Pre-diabetic rats showed increased blood glucose levels and impaired glucose tolerance. Both testicular PGC-1α and Sirt3 levels were decreased. NRF-1, NRF-2 and TFAM were not altered. Testicular mtDNA content was decreased. Mitochondrial complex I activity was increased, whereas mitochondrial complex III activity was decreased. Adenylate energy charge was decreased in pre-diabetic rats, as were ATP and ADP levels. Conversely, AMP levels were increased, evidencing a decreased ATP/AMP ratio. Concerning to oxidative stress pre-diabetes decreased testicular antioxidant capacity and increased lipid and protein oxidation. In sum, pre-diabetes compromises testicular mitochondrial function by repressing PGC-1α/Sirt3 axis and mtDNA copy number, declining respiratory capacity and increasing oxidative stress. This study gives new insights into overall testicular bioenergetics at this prodromal stage of disease.


Assuntos
Metabolismo Energético/fisiologia , Estresse Oxidativo/fisiologia , Estado Pré-Diabético/fisiopatologia , Sirtuína 3/metabolismo , Testículo/metabolismo , Fatores de Transcrição/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Glicemia/metabolismo , Western Blotting , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Insulina/sangue , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase , Estado Pré-Diabético/sangue , Ratos , Ratos Wistar
13.
Prostate ; 75(9): 923-35, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25786656

RESUMO

BACKGROUND: Imatinib mesylate is a chemotherapeutic drug that inhibits the tyrosine kinase activity of c-KIT and has been successfully used to treat leukemias and some solid tumors. However, its application for treatment of hormone-refractory prostate cancer (HRPC) has shown modest effectiveness and did not follow the outcomes in cultured cells or animal models. Moreover, the molecular pathways by which imatinib induces cytotoxicity in prostate cancer cells are poorly characterized. METHODS: Two cell line models of HRPC (DU145 and PC3) were exposed to 20 µM of imatinib for 6-72 hr. MTS assay was used to assess cell viability during the course of experiment. Gene expression analysis of c-KIT, cell-cycle and apoptosis regulators, and angiogenic factors was determined by means of real-time PCR, western blot, and/or immunocytochemistry. The enzymatic activity of the apoptosis effector, caspase-3, was determined by a colorimetric assay. RESULTS: Imatinib significantly decreased the viability of DU145 cells but paradoxically augmented the viability of PC3 cells. DU145 cells displayed diminished expression of anti-apoptotic Bcl-2 protein and augmented levels of caspase-8 and -9, as well as, increased enzymatic activity of caspase-3 in response to imatinib. No differences existed on the expression levels of apoptosis-related proteins in PC3 cells treated with imatinib, though the activity of caspase-3 was decreased. The mRNA levels of angiogenic factor VEGF were decreased in DU145-treated cells, whereas an opposite effect was seen in PC3. In addition, it was shown that DU145 and PC3 cells present a differential expression of c-KIT protein variants. CONCLUSION: DU145 and PC3 cells displayed a contradictory behavior in response to imatinib, which was underpinned by a distinct expression pattern (or activity) of target regulators of cell-cycle, apoptosis, and angiogenesis. The paradoxical effect of imatinib in PC3 cells may be related with the differential expression of c-KIT protein variants. Moreover, the present findings helped to understand the discrepancies in the efficacy of imatinib as therapeutic option in HRPC.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Piperazinas/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proteínas Proto-Oncogênicas c-kit/biossíntese , Pirimidinas/farmacologia , Western Blotting , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Imuno-Histoquímica , Masculino , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Quinases Ativadas por p21/biossíntese , Quinases Ativadas por p21/genética
14.
Expert Rev Mol Med ; 17: e2, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26258687

RESUMO

In the mammalian testis, spermatogenesis is a highly coordinated process of germ cell development, which ends with the release of 'mature' spermatozoa. The fine regulation of spermatogenesis is strictly dependent on sex steroid hormones, which orchestrate the cellular and molecular events underlying normal development of germ cells. Sex steroids actions also rely on the control of germ cell survival, and the programmed cell death by apoptosis has been indicated as a critical process in regulating the size and quality of the germ line. Recently, oestrogens have emerged as important regulators of germ cell fate. However, the beneficial or detrimental effects of oestrogens in spermatogenesis are controversial, with independent reports arguing for their role as cell survival factors or as apoptosis-inducers. The dual behaviour of oestrogens, shifting from 'angels to devils' is supported by the clinical findings of increased oestrogens levels in serum and intratesticular milieu of idiopathic infertile men. This review aims to discuss the available information concerning the role of oestrogens in the control of germ cell death and summarises the signalling mechanisms driven oestrogen-induced apoptosis. The present data represent a valuable basis for the clinical management of hyperoestrogenism-related infertility and provide a rationale for the use of oestrogen-target therapies in male infertility.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Estrogênios/metabolismo , Infertilidade Masculina/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Estrogênios/farmacologia , Regulação da Expressão Gênica , Humanos , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Masculino , Mamíferos , Transdução de Sinais , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Testículo/citologia , Testículo/efeitos dos fármacos
15.
Cell Mol Life Sci ; 71(1): 93-111, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23519827

RESUMO

Regucalcin (RGN) is a calcium (Ca(2+))-binding protein widely expressed in vertebrate and invertebrate species, which is also known as senescence marker protein 30, due to its molecular weight (33 kDa) and a characteristically diminished expression with the aging process. RGN regulates intracellular Ca(2+) homeostasis and the activity of several proteins involved in intracellular signalling pathways, namely, kinases, phosphatases, phosphodiesterase, nitric oxide synthase and proteases, which highlights its importance in cell biology. In addition, RGN has cytoprotective effects reducing intracellular levels of oxidative stress, also playing a role in the control of cell survival and apoptosis. Multiple factors have been identified regulating the cell levels of RGN transcripts and protein, and an altered expression pattern of this interesting protein has been found in cases of reproductive disorders, neurodegenerative diseases and cancer. Moreover, RGN is a serum-secreted protein, and its levels have been correlated with the stage of disease, which strongly suggests the usefulness of this protein as a potential biomarker for monitoring disease onset and progression. The present review aims to discuss the available information concerning RGN expression and function in distinct cell types and tissues, integrating cellular and molecular mechanisms in the context of normal and pathological conditions. Insight into the cellular actions of RGN will be a key step towards deepening the knowledge of the biology of several human diseases.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Animais , Apoptose , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Humanos , Estresse Oxidativo , RNA Mensageiro/metabolismo , Transdução de Sinais
16.
Prostate ; 74(12): 1189-98, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24975685

RESUMO

BACKGROUND: Regucalcin (RGN) is a calcium (Ca(2+) )-binding protein underexpressed in prostate adenocarcinoma comparatively to non-neoplastic prostate or benign prostate hyperplasia cases. Moreover, RGN expression is negatively associated with the cellular differentiation of prostate adenocarcinoma, suggesting that loss of RGN may be associated with tumor onset and progression. However, the RGN actions over the control of prostate cell growth have not been investigated. METHODS: Androgens are implicated in the promotion of prostate cell proliferation, thus we studied the in vivo effect of androgens on RGN expression in rat prostate. The role of RGN modulating cell proliferation and apoptotic pathways in rat prostate was investigated using transgenic animals (Tg-RGN) overexpressing the protein. RESULTS: In vivo stimulation with 5α-dihydrotestosterone (DHT) down-regulated RGN expression in rat prostate. Cell proliferation index and prostate weight were reduced in Tg-RGN, which was concomitant with altered expression of cell-cycle regulators. Tg-RGN presented diminished expression of the oncogene H-ras and increased expression of cell-cycle inhibitor p21. Levels of anti-apoptotic Bcl-2, as well as the Bcl-2/Bax protein ratio were increased in prostates overexpressing RGN. Both caspase-3 expression and enzyme activity were decreased in the prostates of Tg-RGN. CONCLUSIONS: Overexpression of RGN resulted in inhibition of cell proliferation and apoptotic pathways, which demonstrated its role maintaining prostate growth balance. Thus, deregulation of RGN expression may be an important event favoring the development of prostate cancer. Moreover, the DHT effect down-regulating RGN expression in rat prostate highlighted for the importance of this protein in prostatic physiology.


Assuntos
Androgênios/genética , Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Ciclo Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Próstata/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Hidrolases de Éster Carboxílico , Regulação para Baixo/genética , Inibidores do Crescimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Masculino , Próstata/citologia , Próstata/patologia , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Transdução de Sinais/genética
17.
Mol Reprod Dev ; 81(12): 1064-79, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25359157

RESUMO

Maintaining the delicate balance between cell survival and death is of the utmost importance for the proper development of germ cells and subsequent fertility. On the other hand, the fine regulation of tissue homeostasis by mechanisms that control cell fate is a factor that can prevent carcinogenesis. c-KIT is a type III receptor tyrosine kinase activated by its ligand, stem cell factor (SCF). c-KIT signaling plays a crucial role in cell fate decisions, specifically controlling cell proliferation, differentiation, survival, and apoptosis. Indeed, deregulating the SCF/c-KIT system by attenuation or overactivation of its signaling strength is linked to male infertility and cancer, and rebalancing its activity via c-KIT inhibitors has proven beneficial in treating human tumors that contain gain-of-function mutations or overexpress c-KIT. This review addresses the roles of SCF and c-KIT in the male reproductive tract, and discusses the potential application of c-KIT target therapies in disorders of the reproductive system.


Assuntos
Fertilidade/fisiologia , Genitália/fisiologia , Modelos Biológicos , Neoplasias/fisiopatologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/fisiologia , Fator de Células-Tronco/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Genitália/metabolismo , Humanos , Masculino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética
18.
Cell Mol Life Sci ; 70(5): 777-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23011766

RESUMO

Hormonal regulation is essential to spermatogenesis. Sertoli cells (SCs) have functions that reach far beyond the physical support of germ cells, as they are responsible for creating the adequate ionic and metabolic environment for germ cell development. Thus, much attention has been given to the metabolic functioning of SCs. During spermatogenesis, germ cells are provided with suitable metabolic substrates, in a set of events mediated by SCs. Multiple signaling cascades regulate SC function and several of these signaling pathways are hormone-dependent and cell-specific. Within the seminiferous tubules, only SCs possess receptors for some hormones rendering them major targets for the hormonal signaling that regulates spermatogenesis. Although the mechanisms by which SCs fulfill their own and germ cells metabolic needs are mostly studied in vitro, SC metabolism is unquestionably a regulation point for germ cell development and the hormonal control of these processes is required for a normal spermatogenesis.


Assuntos
Hormônios/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatogênese , Animais , Metabolismo Energético , Humanos , Masculino
19.
Gen Comp Endocrinol ; 201: 16-20, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24681226

RESUMO

The role of estrogens in male reproductive physiology has been intensively studied over the last few years. Yet, the involvement of their specific receptors has long been a matter of debate. The selective testicular expression of the classic nuclear estrogen receptors (ERα and ERß) argues in favor of ER-specific functions in the spermatogenic event. Recently, the existence of a G protein-coupled estrogen receptor (GPR30) mediating non-genomic effects of estrogens has also been described. However, little is known about the specific testicular expression pattern of GPR30, as well as on its participation in the control of male reproductive function. Herein, by means of immunohistochemical and molecular biology techniques (RT-PCR and Western blot), we aimed to present the first exhaustive evaluation of GPR30 expression in non-neoplastic human testicular cells. Indeed, we were able to demonstrate that GPR30 was expressed in human testicular tissue and that the staining pattern was consistent with its cytoplasmic localization. Additionally, by using cultured human Sertoli cells (SCs) and isolated haploid and diploid germ cells fractions, we confirmed that GPR30 is expressed in SCs and diploid germ cells but not in haploid germ cells. This specific expression pattern suggests a role for GPR30 in spermatogenesis.


Assuntos
Células Germinativas/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Western Blotting , Células Cultivadas , Expressão Gênica , Células Germinativas/citologia , Humanos , Técnicas Imunoenzimáticas , Masculino , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Túbulos Seminíferos/citologia , Células de Sertoli/citologia , Espermatogênese
20.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38931386

RESUMO

The psychedelic beverage ayahuasca is originally obtained by Banisteriopsis caapi (B. caapi) (BC) and Psychotria viridis (P. viridis) (PV). However, sometimes these plant species are replaced by others that mimic the original effects, such as Mimosa hostilis (M. hostilis) (MH) and Peganum harmala (P. harmala) (PH). Its worldwide consumption and the number of studies on its potential therapeutic effects has increased. This study aimed to evaluate the anticancer properties of ayahuasca in human colorectal adenocarcinoma cells. Thus, the maximum inhibitory concentration (IC50) of decoctions of MH, PH, and a mixture of these (MHPH) was determined. The activities of caspases 3 and 9 were evaluated, and the cell proliferation index was determined through immunocytochemical analysis (Ki-67). Two fluorescent probes were used to evaluate the production of oxidative stress and the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) was also evaluated. It was demonstrated that exposure to the extracts significantly induced apoptosis in Caco-2 cells, while decreasing cell proliferation. MH and MHPH samples significantly reduced oxidative stress and significantly increased glutathione peroxidase activity. No significant differences were found in SOD activity. Overall, it was demonstrated that the decoctions have a potential anticancer activity in Caco-2 cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA