Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 569(7758): 663-671, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31142858

RESUMO

Type 2 diabetes mellitus (T2D) is a growing health problem, but little is known about its early disease stages, its effects on biological processes or the transition to clinical T2D. To understand the earliest stages of T2D better, we obtained samples from 106 healthy individuals and individuals with prediabetes over approximately four years and performed deep profiling of transcriptomes, metabolomes, cytokines, and proteomes, as well as changes in the microbiome. This rich longitudinal data set revealed many insights: first, healthy profiles are distinct among individuals while displaying diverse patterns of intra- and/or inter-personal variability. Second, extensive host and microbial changes occur during respiratory viral infections and immunization, and immunization triggers potentially protective responses that are distinct from responses to respiratory viral infections. Moreover, during respiratory viral infections, insulin-resistant participants respond differently than insulin-sensitive participants. Third, global co-association analyses among the thousands of profiled molecules reveal specific host-microbe interactions that differ between insulin-resistant and insulin-sensitive individuals. Last, we identified early personal molecular signatures in one individual that preceded the onset of T2D, including the inflammation markers interleukin-1 receptor agonist (IL-1RA) and high-sensitivity C-reactive protein (CRP) paired with xenobiotic-induced immune signalling. Our study reveals insights into pathways and responses that differ between glucose-dysregulated and healthy individuals during health and disease and provides an open-access data resource to enable further research into healthy, prediabetic and T2D states.


Assuntos
Biomarcadores/metabolismo , Biologia Computacional , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/genética , Estado Pré-Diabético/microbiologia , Proteoma/metabolismo , Transcriptoma , Adulto , Idoso , Antibacterianos/administração & dosagem , Biomarcadores/análise , Estudos de Coortes , Conjuntos de Dados como Assunto , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Glucose/metabolismo , Voluntários Saudáveis , Humanos , Inflamação/metabolismo , Vacinas contra Influenza/imunologia , Insulina/metabolismo , Resistência à Insulina , Estudos Longitudinais , Masculino , Microbiota/fisiologia , Pessoa de Meia-Idade , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Infecções Respiratórias/microbiologia , Infecções Respiratórias/virologia , Estresse Fisiológico , Vacinação/estatística & dados numéricos
2.
Nat Immunol ; 11(1): 76-83, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19855381

RESUMO

Antimicrobial peptides are important effectors of innate immunity throughout the plant and animal kingdoms. In the mammalian small intestine, Paneth cell alpha-defensins are antimicrobial peptides that contribute to host defense against enteric pathogens. To determine if alpha-defensins also govern intestinal microbial ecology, we analyzed the intestinal microbiota of mice expressing a human alpha-defensin gene (DEFA5) and in mice lacking an enzyme required for the processing of mouse alpha-defensins. In these complementary models, we detected significant alpha-defensin-dependent changes in microbiota composition, but not in total bacterial numbers. Furthermore, DEFA5-expressing mice had striking losses of segmented filamentous bacteria and fewer interleukin 17 (IL-17)-producing lamina propria T cells. Our data ascribe a new homeostatic role to alpha-defensins in regulating the makeup of the commensal microbiota.


Assuntos
Ecologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , alfa-Defensinas/metabolismo , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Feminino , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Interleucina-17/imunologia , Interleucina-17/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestinos/imunologia , Masculino , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Metagenoma , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Filogenia , RNA Ribossômico 16S/genética , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/imunologia
3.
Proc Natl Acad Sci U S A ; 116(8): 3030-3035, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30635418

RESUMO

Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host-symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a reproductive organ containing a bacterial consortium. Our findings suggest that the two symbiotic organs within E. scolopes originated by different evolutionary mechanisms. Transcripts expressed in these microbe-associated tissues displayed their own unique signatures in both coding sequences and the surrounding regulatory regions. Compared with other tissues, the light organ showed an abundance of genes associated with immunity and mediating light, whereas the ANG was enriched in orphan genes known only from E. scolopes Together, these analyses provide evidence for different patterns of genomic evolution of symbiotic organs within a single host.


Assuntos
Bactérias/isolamento & purificação , Interações entre Hospedeiro e Microrganismos/genética , Octopodiformes/microbiologia , Simbiose/genética , Aliivibrio fischeri/genética , Aliivibrio fischeri/isolamento & purificação , Animais , Bactérias/classificação , Bactérias/genética , Cefalópodes/genética , Cefalópodes/microbiologia , Decapodiformes/genética , Decapodiformes/microbiologia , Genoma/genética , Octopodiformes/genética
4.
Gastroenterology ; 157(4): 1109-1122, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31255652

RESUMO

BACKGROUND & AIMS: The intestinal microbiome might affect the development and severity of nonalcoholic fatty liver disease (NAFLD). We analyzed microbiomes of children with and without NAFLD. METHODS: We performed a prospective, observational, cross-sectional study of 87 children (age range, 8-17 years) with biopsy-proven NAFLD and 37 children with obesity without NAFLD (controls). Fecal samples were collected and microbiome composition and functions were assessed using 16S ribosomal RNA amplicon sequencing and metagenomic shotgun sequencing. Microbial taxa were identified using zero-inflated negative binomial modeling. Genes contributing to bacterial pathways were identified using gene set enrichment analysis. RESULTS: Fecal microbiomes of children with NAFLD had lower α-diversity than those of control children (3.32 vs 3.52, P = .016). Fecal microbiomes from children with nonalcoholic steatohepatitis (NASH) had the lowest α-diversity (control, 3.52; NAFLD, 3.36; borderline NASH, 3.37; NASH, 2.97; P = .001). High abundance of Prevotella copri was associated with more severe fibrosis (P = .036). Genes for lipopolysaccharide biosynthesis were enriched in microbiomes from children with NASH (P < .001). Classification and regression tree model with level of alanine aminotransferase and relative abundance of the lipopolysaccharide pathway gene encoding 3-deoxy-d-manno-octulosonate 8-phosphate-phosphatase identified patients with NASH with an area under the receiver operating characteristic curve value of 0.92. Genes involved in flagellar assembly were enriched in the fecal microbiomes of patients with moderate to severe fibrosis (P < .001). Classification and regression tree models based on level of alanine aminotransferase and abundance of genes encoding flagellar biosynthesis protein had good accuracy for identifying case children with moderate to severe fibrosis (area under the receiver operating characteristic curve, 0.87). CONCLUSIONS: In an analysis of fecal microbiomes of children with NAFLD, we associated NAFLD and NASH with intestinal dysbiosis. NAFLD and its severity were associated with greater abundance of genes encoding inflammatory bacterial products. Alterations to the intestinal microbiome might contribute to the pathogenesis of NAFLD and be used as markers of disease or severity.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Microbioma Gastrointestinal , Intestinos/microbiologia , Cirrose Hepática/microbiologia , Hepatopatia Gordurosa não Alcoólica/microbiologia , RNA Ribossômico 16S/genética , Adolescente , Bactérias/classificação , Bactérias/patogenicidade , Estudos de Casos e Controles , Criança , Estudos Transversais , Disbiose , Fezes/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/etiologia , Masculino , Metagenoma , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Estudos Prospectivos , Ribotipagem , Índice de Gravidade de Doença
5.
Nature ; 500(7464): 571-4, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23873039

RESUMO

The dynamics of adaptation determine which mutations fix in a population, and hence how reproducible evolution will be. This is central to understanding the spectra of mutations recovered in the evolution of antibiotic resistance, the response of pathogens to immune selection, and the dynamics of cancer progression. In laboratory evolution experiments, demonstrably beneficial mutations are found repeatedly, but are often accompanied by other mutations with no obvious benefit. Here we use whole-genome whole-population sequencing to examine the dynamics of genome sequence evolution at high temporal resolution in 40 replicate Saccharomyces cerevisiae populations growing in rich medium for 1,000 generations. We find pervasive genetic hitchhiking: multiple mutations arise and move synchronously through the population as mutational 'cohorts'. Multiple clonal cohorts are often present simultaneously, competing with each other in the same population. Our results show that patterns of sequence evolution are driven by a balance between these chance effects of hitchhiking and interference, which increase stochastic variation in evolutionary outcomes, and the deterministic action of selection on individual mutations, which favours parallel evolutionary solutions in replicate populations.


Assuntos
Células Clonais/citologia , Evolução Molecular , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Adaptação Fisiológica/genética , Núcleo Celular/genética , Células Clonais/metabolismo , Genes Fúngicos/genética , Mutação/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/citologia , Processos Estocásticos , Fatores de Tempo
6.
J Pediatr ; 203: 47-54.e4, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30173873

RESUMO

OBJECTIVES: To determine the association between diet during pregnancy and infancy, including breastfeeding vs formula feeding, solid food introduction, and the infant intestinal microbiome. STUDY DESIGN: Infants participating in the Vitamin D Antenatal Asthma Reduction Trial were included in this study (n = 323). Maternal and infant diets were assessed by questionnaire. Infant stool samples were collected at age 3-6 months. Stool sequencing was performed using the Roche 454 platform. Analyses were stratified by race/ethnicity. RESULTS: Breastfeeding, compared with formula feeding, was independently associated with infant intestinal microbial diversity. Breastfeeding also had the most consistent associations with individual taxa that have been previously linked to early-life diet and health outcomes (eg, Bifidobacterium). Maternal diet during pregnancy and solid food introduction were less associated with the infant gut microbiome than breastfeeding status. We found evidence of a possible interaction between breastfeeding and child race/ethnicity on microbial composition. CONCLUSIONS: Breastfeeding vs formula feeding is the dietary factor that is most consistently independently associated with the infant intestinal microbiome. The relationship between breastfeeding status and intestinal microbiome composition varies by child race/ethnicity. Future studies will need to investigate factors, including genomic factors, which may influence the response of the microbiome to diet. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00920621.


Assuntos
Dieta , Microbioma Gastrointestinal , Bacteroides/genética , Bacteroides/isolamento & purificação , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Aleitamento Materno , Clostridium/genética , Clostridium/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Lactente , Fórmulas Infantis , Masculino , Gravidez , RNA Ribossômico 16S , Fatores Raciais , Análise de Sequência de RNA , Inquéritos e Questionários
7.
Allergy ; 73(1): 145-152, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28632934

RESUMO

BACKGROUND: Alterations in the intestinal microbiome are prospectively associated with the development of asthma; less is known regarding the role of microbiome alterations in food allergy development. METHODS: Intestinal microbiome samples were collected at age 3-6 months in children participating in the follow-up phase of an interventional trial of high-dose vitamin D given during pregnancy. At age 3, sensitization to foods (milk, egg, peanut, soy, wheat, walnut) was assessed. Food allergy was defined as caretaker report of healthcare provider-diagnosed allergy to the above foods prior to age 3 with evidence of IgE sensitization. Analysis was performed using Phyloseq and DESeq2; P-values were adjusted for multiple comparisons. RESULTS: Complete data were available for 225 children; there were 87 cases of food sensitization and 14 cases of food allergy. Microbial diversity measures did not differ between food sensitization and food allergy cases and controls. The genera Haemophilus (log2 fold change -2.15, P=.003), Dialister (log2 fold change -2.22, P=.009), Dorea (log2 fold change -1.65, P=.02), and Clostridium (log2 fold change -1.47, P=.002) were underrepresented among subjects with food sensitization. The genera Citrobacter (log2 fold change -3.41, P=.03), Oscillospira (log2 fold change -2.80, P=.03), Lactococcus (log2 fold change -3.19, P=.05), and Dorea (log2 fold change -3.00, P=.05) were underrepresented among subjects with food allergy. CONCLUSIONS: The temporal association between bacterial colonization and food sensitization and allergy suggests that the microbiome may have a causal role in the development of food allergy. Our findings have therapeutic implications for the prevention and treatment of food allergy.


Assuntos
Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/imunologia , Imunização , Microbiota , Alérgenos/imunologia , Biodiversidade , Pré-Escolar , Feminino , Microbioma Gastrointestinal , Humanos , Imunoglobulina E/imunologia , Masculino , Metagenoma , Metagenômica/métodos , Microbiota/imunologia
8.
J Infect Dis ; 217(1): 82-92, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29029188

RESUMO

Background: Carbapenem resistance is a critical healthcare challenge worldwide. Particularly concerning is the widespread dissemination of Klebsiella pneumoniae carbapenemase (KPC). Klebsiella pneumoniae harboring blaKPC (KPC-Kpn) is endemic in many areas including the United States, where the epidemic was primarily mediated by the clonal dissemination of Kpn ST258. We postulated that the spread of blaKPC in other regions occurs by different and more complex mechanisms. To test this, we investigated the evolution and dynamics of spread of KPC-Kpn in Colombia, where KPC became rapidly endemic after emerging in 2005. Methods: We sequenced the genomes of 133 clinical isolates recovered from 24 tertiary care hospitals located in 10 cities throughout Colombia, between 2002 (before the emergence of KPC-Kpn) and 2014. Phylogenetic reconstructions and evolutionary mapping were performed to determine temporal and genetic associations between the isolates. Results: Our results indicate that the start of the epidemic was driven by horizontal dissemination of mobile genetic elements carrying blaKPC-2, followed by the introduction and subsequent spread of clonal group 258 (CG258) isolates containing blaKPC-3. Conclusions: The combination of 2 evolutionary mechanisms of KPC-Kpn within a challenged health system of a developing country created the "perfect storm" for sustained endemicity of these multidrug-resistant organisms in Colombia.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Epidemias , Evolução Molecular , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Cidades/epidemiologia , Colômbia/epidemiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Transmissão de Doença Infecciosa , Transferência Genética Horizontal , Humanos , Sequências Repetitivas Dispersas , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Epidemiologia Molecular , Filogenia , Análise de Sequência de DNA , Centros de Atenção Terciária , Sequenciamento Completo do Genoma
9.
Lancet ; 387(10031): 1928-36, 2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26969089

RESUMO

BACKGROUND: Gut bacteria might predispose to or protect from necrotising enterocolitis, a severe illness linked to prematurity. In this observational prospective study we aimed to assess whether one or more bacterial taxa in the gut differ between infants who subsequently develop necrotising enterocolitis (cases) and those who do not (controls). METHODS: We enrolled very low birthweight (1500 g and lower) infants in the primary cohort (St Louis Children's Hospital) between July 7, 2009, and Sept 16, 2013, and in the secondary cohorts (Kosair Children's Hospital and Children's Hospital at Oklahoma University) between Sept 12, 2011 and May 25, 2013. We prospectively collected and then froze stool samples for all infants. Cases were defined as infants whose clinical courses were consistent with necrotising enterocolitis and whose radiographs fulfilled criteria for Bell's stage 2 or 3 necrotising enterocolitis. Control infants (one to four per case; not fixed ratios) with similar gestational ages, birthweight, and birth dates were selected from the population after cases were identified. Using primers specific for bacterial 16S rRNA genes, we amplified and then pyrosequenced faecal DNA from stool samples. With use of Dirichlet multinomial analysis and mixed models to account for repeated measures, we identified host factors, including development of necrotising enterocolitis, associated with gut bacterial populations. FINDINGS: We studied 2492 stool samples from 122 infants in the primary cohort, of whom 28 developed necrotising enterocolitis; 94 infants were used as controls. The microbial community structure in case stools differed significantly from those in control stools. These differences emerged only after the first month of age. In mixed models, the time-by-necrotising-enterocolitis interaction was positively associated with Gammaproteobacteria (p=0·0010) and negatively associated with strictly anaerobic bacteria, especially Negativicutes (p=0·0019). We studied 1094 stool samples from 44 infants in the secondary cohorts. 18 infants developed necrotising enterocolitis (cases) and 26 were controls. After combining data from all cohorts (166 infants, 3586 stools, 46 cases of necrotising enterocolitis), there were increased proportions of Gammaproteobacteria (p=0·0011) and lower proportions of both Negativicutes (p=0·0013) and the combined Clostridia-Negativicutes class (p=0·0051) in infants who went on to develop necrotising enterocolitis compared with controls. These associations were strongest in both the primary cohort and the overall cohort for infants born at less than 27 weeks' gestation. INTERPRETATION: A relative abundance of Gammaproteobacteria (ie, Gram-negative facultative bacilli) and relative paucity of strict anaerobic bacteria (especially Negativicutes) precede necrotising enterocolitis in very low birthweight infants. These data offer candidate targets for interventions to prevent necrotising enterocolitis, at least among infants born at less than 27 weeks' gestation. FUNDING: National Institutes of Health (NIH), Foundation for the NIH, the Children's Discovery Institute.


Assuntos
Disbiose/microbiologia , Enterocolite Necrosante/microbiologia , Infecções por Bactérias Gram-Negativas , Infecções por Bactérias Gram-Positivas , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Idade Gestacional , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Masculino , Estudos Prospectivos
11.
Am J Respir Crit Care Med ; 194(2): 226-35, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26835554

RESUMO

RATIONALE: Previous work found the lung microbiome in healthy subjects infected with HIV was similar to that in uninfected subjects. We hypothesized the lung microbiome from subjects infected with HIV with more advanced disease would differ from that of an uninfected control population. OBJECTIVES: To measure the lung microbiome in an HIV-infected population with advanced disease. METHODS: 16s RNA gene sequencing was performed on acellular bronchoalveolar lavage (BAL) fluid from 30 subjects infected with HIV with advanced disease (baseline mean CD4 count, 262 cells/mm(3)) before and up to 3 years after starting highly active antiretroviral therapy (HAART) and compared with 22 uninfected control subjects. MEASUREMENTS AND MAIN RESULTS: The lung microbiome in subjects infected with HIV with advanced disease demonstrated decreased alpha diversity (richness and diversity) and greater beta diversity compared with uninfected BAL. Differences improved with HAART, but still persisted up to 3 years after starting therapy. Population dispersion in the group infected with HIV was significantly greater than in the uninfected cohort and declined after treatment. There were differences in the relative abundance of some bacteria between the two groups at baseline and after 1 year of therapy. After 1 year on HAART, HIV BAL contained an increased abundance of Prevotella and Veillonella, bacteria previously associated with lung inflammation. CONCLUSIONS: The lung microbiome in subjects infected with HIV with advanced disease is altered compared with an uninfected population both in diversity and bacterial composition. Differences remain up to 3 years after starting HAART. We speculate an altered lung microbiome in HIV infection may contribute to chronic inflammation and lung complications seen in the HAART era.


Assuntos
Infecções por HIV/microbiologia , Pulmão/microbiologia , Microbiota , Adulto , Terapia Antirretroviral de Alta Atividade , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de RNA
12.
Proc Natl Acad Sci U S A ; 111(34): 12522-7, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114261

RESUMO

In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33-36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration.


Assuntos
Trato Gastrointestinal/microbiologia , Recém-Nascido Prematuro , Microbiota , Fatores Etários , Clostridium/genética , Clostridium/isolamento & purificação , Estudos de Coortes , Fezes/microbiologia , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Microbiota/genética , Estudos Prospectivos , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
13.
BMC Microbiol ; 16(1): 182, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27514621

RESUMO

BACKGROUND: Domestic combustion of biomass fuels, such as wood, charcoal, crop residue and dung causes Household Air Pollution (HAP). These inhaled particulates affect more than half of the world's population, causing respiratory problems such as infection and inflammatory lung disease. We examined whether the presence of black carbon in alveolar macrophages was associated with alterations in the lung microbiome in a Malawi population. METHODS: Bronchoalveolar lavage samples from 44 healthy adults were sequenced using 16S rDNA amplification to assess microbial diversity, richness and relative taxa abundance. Individuals were classified as high or low particulate exposure as determined by questionnaire and the percentage of black carbon within their alveolar macrophages. RESULTS: Subjects in the low and high particulate groups did not differ in terms of source of fuels used for cooking or lighting. There was no difference in alpha or beta diversity by particulate group. Neisseria and Streptococcus were significantly more abundant in samples from high particulate exposed individuals, and Tropheryma was found less abundant. Petrobacter abundance was higher in people using biomass fuel for household cooking and lighting, compared with exclusive use of electricity. CONCLUSIONS: Healthy adults in Malawi exposed to higher levels of particulates have higher abundances of potentially pathogenic bacteria (Streptococcus, Neisseria) within their lung microbiome. Domestic biomass fuel use was associated with an uncommon environmental bacterium (Petrobacter) associated with oil-rich niches.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Pulmão/microbiologia , Material Particulado/análise , Adulto , Poluição do Ar em Ambientes Fechados/efeitos adversos , Lavagem Broncoalveolar/métodos , Líquido da Lavagem Broncoalveolar/microbiologia , Carbono/análise , Carbono/farmacocinética , Culinária/métodos , Estudos Transversais , Feminino , Combustíveis Fósseis/efeitos adversos , Combustíveis Fósseis/análise , Habitação , Humanos , Exposição por Inalação , Pulmão/química , Pulmão/metabolismo , Macrófagos Alveolares/química , Macrófagos Alveolares/metabolismo , Malaui , Masculino , Microbiota , Material Particulado/efeitos adversos , Fatores Socioeconômicos
14.
Am J Respir Crit Care Med ; 192(11): 1335-44, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26247840

RESUMO

RATIONALE: Improved understanding of the lung microbiome in HIV-infected individuals could lead to better strategies for diagnosis, therapy, and prophylaxis of HIV-associated pneumonias. Differences in the oral and lung microbiomes in HIV-infected and HIV-uninfected individuals are not well defined. Whether highly active antiretroviral therapy influences these microbiomes is unclear. OBJECTIVES: We determined whether oral and lung microbiomes differed in clinically healthy groups of HIV-infected and HIV-uninfected subjects. METHODS: Participating sites in the Lung HIV Microbiome Project contributed bacterial 16S rRNA sequencing data from oral washes and bronchoalveolar lavages (BALs) obtained from HIV-uninfected individuals (n = 86), HIV-infected individuals who were treatment naive (n = 18), and HIV-infected individuals receiving antiretroviral therapy (n = 38). MEASUREMENTS AND MAIN RESULTS: Microbial populations differed in the oral washes among the subject groups (Streptococcus, Actinomyces, Rothia, and Atopobium), but there were no individual taxa that differed among the BALs. Comparison of oral washes and BALs demonstrated similar patterns from HIV-uninfected individuals and HIV-infected individuals receiving antiretroviral therapy, with multiple taxa differing in abundance. The pattern observed from HIV-infected individuals who were treatment naive differed from the other two groups, with differences limited to Veillonella, Rothia, and Granulicatella. CD4 cell counts did not influence the oral or BAL microbiome in these relatively healthy, HIV-infected subjects. CONCLUSIONS: The overall similarity of the microbiomes in participants with and without HIV infection was unexpected, because HIV-infected individuals with relatively preserved CD4 cell counts are at higher risk for lower respiratory tract infections, indicating impaired local immune function.


Assuntos
Líquido da Lavagem Broncoalveolar/microbiologia , Infecções por HIV/microbiologia , Pulmão/microbiologia , Microbiota , Boca/microbiologia , Adulto , Terapia Antirretroviral de Alta Atividade , Estudos de Coortes , Feminino , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
15.
BMC Biol ; 12: 71, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25212266

RESUMO

BACKGROUND: The Human Microbiome Project (HMP) was undertaken with the goal of defining microbial communities in and on the bodies of healthy individuals using high-throughput, metagenomic sequencing analysis. The viruses present in these microbial communities, the 'human virome', are an important aspect of the human microbiome that is particularly understudied in the absence of overt disease. We analyzed eukaryotic double-stranded DNA (dsDNA) viruses, together with dsDNA replicative intermediates of single-stranded DNA viruses, in metagenomic sequence data generated by the HMP. 706 samples from 102 subjects were studied, with each subject sampled at up to five major body habitats: nose, skin, mouth, vagina, and stool. Fifty-one individuals had samples taken at two or three time points 30 to 359 days apart from at least one of the body habitats. RESULTS: We detected an average of 5.5 viral genera in each individual. At least 1 virus was detected in 92% of the individuals sampled. These viruses included herpesviruses, papillomaviruses, polyomaviruses, adenoviruses, anelloviruses, parvoviruses, and circoviruses. Each individual had a distinct viral profile, demonstrating the high interpersonal diversity of the virome. Some components of the virome were stable over time. CONCLUSIONS: This study is the first to use high-throughput DNA sequencing to describe the diversity of eukaryotic dsDNA viruses in a large cohort of normal individuals who were sampled at multiple body sites. Our results show that the human virome is a complex component of the microbial flora. Some viruses establish long-term infections that may be associated with increased risk or possibly with protection from disease. A better understanding of the composition and dynamics of the virome may hold important keys to human health.


Assuntos
Vírus de DNA/genética , DNA Viral/análise , Metagenoma , Adolescente , Adulto , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Missouri , Análise de Sequência de DNA , Texas , Adulto Jovem
17.
N Engl J Med ; 365(10): 892-900, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21899450

RESUMO

BACKGROUND: Daptomycin is a lipopeptide with bactericidal activity that acts on the cell membrane of enterococci and is often used off-label to treat patients infected with vancomycin-resistant enterococci. However, the emergence of resistance to daptomycin during therapy threatens its usefulness. METHODS: We performed whole-genome sequencing and characterization of the cell envelope of a clinical pair of vancomycin-resistant Enterococcus faecalis isolates from the blood of a patient with fatal bacteremia; one isolate (S613) was from blood drawn before treatment and the other isolate (R712) was from blood drawn after treatment with daptomycin. The minimal inhibitory concentrations (MICs) of these two isolates were 1 and 12 µg per milliliter, respectively. Gene replacements were made to exchange the alleles found in isolate S613 with those in isolate R712. RESULTS: Isolate R712 had in-frame deletions in three genes. Two genes encoded putative enzymes involved in phospholipid metabolism, GdpD (which denotes glycerophosphoryl diester phosphodiesterase) and Cls (which denotes cardiolipin synthetase), and one gene encoded a putative membrane protein, LiaF (which denotes lipid II cycle-interfering antibiotics protein but whose exact function is not known). LiaF is predicted to be a member of a three-component regulatory system (LiaFSR) involved in the stress-sensing response of the cell envelope to antibiotics. Replacement of the liaF allele of isolate S613 with the liaF allele from isolate R712 quadrupled the MIC of daptomycin, whereas replacement of the gdpD allele had no effect on MIC. Replacement of both the liaF and gdpD alleles of isolate S613 with the liaF and gdpD alleles of isolate R712 raised the daptomycin MIC for isolate S613 to 12 µg per milliliter. As compared with isolate S613, isolate R712--the daptomycin-resistant isolate--had changes in the structure of the cell envelope and alterations in membrane permeability and membrane potential. CONCLUSIONS: Mutations in genes encoding LiaF and a GdpD-family protein were necessary and sufficient for the development of resistance to daptomycin during the treatment of vancomycin-resistant enterococci. (Funded by the National Institute of Allergy and Infectious Diseases and the National Institutes of Health.).


Assuntos
Antibacterianos/uso terapêutico , Daptomicina/uso terapêutico , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Genes Bacterianos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Mutação , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Daptomicina/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/isolamento & purificação , Enterococcus faecalis/ultraestrutura , Genes Bacterianos/genética , Genoma Bacteriano , Humanos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Análise de Sequência de DNA , Resistência a Vancomicina
18.
Genome Res ; 21(3): 494-504, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21212162

RESUMO

Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys.


Assuntos
Artefatos , Bactérias/genética , RNA Ribossômico 16S/análise , Bactérias/classificação , Sequência de Bases , Quimera/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Genômica , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , RNA Bacteriano/genética , Análise de Sequência de DNA/métodos
19.
J Clin Microbiol ; 52(12): 4260-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25275005

RESUMO

Clostridium difficile infections (CDI) are a growing concern in North America, because of their increasing incidence and severity. Using integrated approaches, we correlated pathogen genotypes and host clinical characteristics for 46 C. difficile infections in a tertiary care medical center during a 6-month interval from January to June 2010. Multilocus sequence typing (MLST) demonstrated 21 known and 2 novel sequence types (STs), suggesting that the institution's C. difficile strains are genetically diverse. ST-1 (which corresponds to pulsed-field gel electrophoresis strain type NAP1/ribotype 027) was the most prevalent (32.6%); 43.5% of the isolates were binary toxin gene positive, of which 75% were ST-1. All strains were ciprofloxacin resistant and metronidazole susceptible, and 8.3% and 13.0% of the isolates were resistant to clindamycin and tetracycline, respectively. The corresponding resistance loci, including potential novel mutations, were identified from the whole-genome sequencing (WGS) of the resistant strains. Core genome single nucleotide polymorphisms (SNPs) determining the phylogenetic relatedness of the 46 strains recapitulated MLST types and provided greater interstrain differentiation. The disease severity was greatest in patients infected with ST-1 and/or binary gene-positive strains, but genome-wide SNP analysis failed to provide additional associations with CDI severity within the same STs. We conclude that MLST and core genome SNP typing result in the same phylogenetic grouping of the 46 C. difficile strains collected in a single hospital. WGS also has the capacity to differentiate those strains within STs and allows the comparison of strains at the individual gene level and at the whole-genome level.


Assuntos
Clostridioides difficile/genética , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Clostridioides difficile/classificação , Clostridioides difficile/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , América do Norte , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Centros de Atenção Terciária
20.
Am J Respir Crit Care Med ; 187(10): 1067-75, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23491408

RESUMO

RATIONALE: Results from 16S rDNA-encoding gene sequence-based, culture-independent techniques have led to conflicting conclusions about the composition of the lower respiratory tract microbiome. OBJECTIVES: To compare the microbiome of the upper and lower respiratory tract in healthy HIV-uninfected nonsmokers and smokers in a multicenter cohort. METHODS: Participants were nonsmokers and smokers without significant comorbidities. Oral washes and bronchoscopic alveolar lavages were collected in a standardized manner. Sequence analysis of bacterial 16S rRNA-encoding genes was performed, and the neutral model in community ecology was used to identify bacteria that were the most plausible members of a lung microbiome. MEASUREMENTS AND MAIN RESULTS: Sixty-four participants were enrolled. Most bacteria identified in the lung were also in the mouth, but specific bacteria such as Enterobacteriaceae, Haemophilus, Methylobacterium, and Ralstonia species were disproportionally represented in the lungs compared with values predicted by the neutral model. Tropheryma was also in the lung, but not the mouth. Mouth communities differed between nonsmokers and smokers in species such as Porphyromonas, Neisseria, and Gemella, but lung bacterial populations did not. CONCLUSIONS: This study is the largest to examine composition of the lower respiratory tract microbiome in healthy individuals and the first to use the neutral model to compare the lung to the mouth. Specific bacteria appear in significantly higher abundance in the lungs than would be expected if they originated from the mouth, demonstrating that the lung microbiome does not derive entirely from the mouth. The mouth microbiome differs in nonsmokers and smokers, but lung communities were not significantly altered by smoking.


Assuntos
Metagenoma , Sistema Respiratório/microbiologia , Fumar , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Líquido da Lavagem Broncoalveolar/microbiologia , Estudos de Coortes , Feminino , Humanos , Pulmão/microbiologia , Masculino , Pessoa de Meia-Idade , Boca/microbiologia , Estudos Prospectivos , Valores de Referência , Análise de Sequência de DNA/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA