Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256160

RESUMO

Obesity is a risk factor for cardiometabolic diseases. Nutrients stimulate GLP-1 release; however, GLP-1 has a short half-life (<2 min), and only <10-15% reaches the systemic circulation. Human L-cells are localized in the distal ileum and colon, while most nutrients are absorbed in the proximal intestine. We hypothesized that combinations of amino acids and fatty acids potentiate GLP-1 release via different L-cell receptors. GLP-1 secretion was studied in the mouse enteroendocrine STC-1 cells. Cells were pre-incubated with buffer for 1 h and treated with nutrients: alpha-linolenic acid (αLA), phenylalanine (Phe), tryptophan (Trp), and their combinations αLA+Phe and αLA+Trp with dipeptidyl peptidase-4 (DPP4) inhibitor. After 1 h GLP-1 in supernatants was measured and cell lysates taken for qPCR. αLA (12.5 µM) significantly stimulated GLP-1 secretion compared with the control. Phe (6.25-25 mM) and Trp (2.5-10 mM) showed a clear dose response for GLP-1 secretion. The combination of αLA (6.25 µM) and either Phe (12.5 mM) or Trp (5 mM) significantly increased GLP-1 secretion compared with αLA, Phe, or Trp individually. The combination of αLA and Trp upregulated GPR120 expression and potentiated GLP-1 secretion. These nutrient combinations could be used in sustained-delivery formulations to the colon to prolong GLP-1 release for diminishing appetite and preventing obesity.


Assuntos
Aminoácidos , Inibidores da Dipeptidil Peptidase IV , Humanos , Animais , Camundongos , Células L , Triptofano , Antivirais , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hipoglicemiantes , Nutrientes , Obesidade
2.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361737

RESUMO

Circadian rhythms significantly affect metabolism, and their disruption leads to cardiometabolic diseases and fibrosis. The clock repressor Rev-Erb is mainly expressed in the liver, heart, lung, adipose tissue, skeletal muscles, and brain, recognized as a master regulator of metabolism, mitochondrial biogenesis, inflammatory response, and fibrosis. Fibrosis is the response of the body to injuries and chronic inflammation with the accumulation of extracellular matrix in tissues. Activation of myofibroblasts is a key factor in the development of organ fibrosis, initiated by hormones, growth factors, inflammatory cytokines, and mechanical stress. This review summarizes the importance of Rev-Erb in ECM remodeling and tissue fibrosis. In the heart, Rev-Erb activation has been shown to alleviate hypertrophy and increase exercise capacity. In the lung, Rev-Erb agonist reduced pulmonary fibrosis by suppressing fibroblast differentiation. In the liver, Rev-Erb inhibited inflammation and fibrosis by diminishing NF-κB activity. In adipose tissue, Rev- Erb agonists reduced fat mass. In summary, the results of multiple studies in preclinical models demonstrate that Rev-Erb is an attractive target for positively influencing dysregulated metabolism, inflammation, and fibrosis, but more specific tools and studies would be needed to increase the information base for the therapeutic potential of these substances interfering with the molecular clock.


Assuntos
Relógios Circadianos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Humanos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição , Ritmo Circadiano/fisiologia , Fibrose , Inflamação
3.
Pharmacol Res ; 167: 105484, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33771699

RESUMO

Recently non-alcoholic fatty liver disease (NAFLD) has grabbed considerable scientific attention, owing to its rapid increase in prevalence worldwide and growing burden on end-stage liver diseases. Metabolic syndrome including obesity, diabetes, and hypertension poses a grave risk to NAFLD etiology and progression. With no drugs available, the mainstay of NAFLD management remains lifestyle changes with exercise and dietary modifications. Nonselective drugs such as metformin, thiazolidinediones (TZDs), ursodeoxycholic acid (UDCA), silymarin, etc., are also being used to target the interrelated pathways for treating NAFLD. Considering the enormous disease burden and the unmet need for drugs, fresh insights into pathogenesis and drug discovery are required. The emergence of the field of epigenetics offers a convincing explanation for the basis of lifestyle, environmental, and other risk factors to influence NAFLD pathogenesis. Therefore, understanding these epigenetic modifications to target the primary cause of the disease might prove a rational strategy to prevent the disease and develop novel therapeutic interventions. Apart from describing the role of epigenetics in the pathogenesis of NAFLD as in other reviews, this review additionally provides an elaborate discussion on exploiting the high plasticity of epigenetic modifications in response to environmental cues, for developing novel therapeutics for NAFLD. Besides, this extensive review provides evidence for epigenetic mechanisms utilized by several potential drugs for NAFLD.


Assuntos
Epigênese Genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/terapia , Animais , Gerenciamento Clínico , Descoberta de Drogas , Epigênese Genética/efeitos dos fármacos , Estilo de Vida Saudável , Humanos
4.
Mol Nutr Food Res ; 68(5): e2300465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389173

RESUMO

SCOPE: Diet and exercise are significant players in obesity and metabolic diseases. Time-restricted feeding (tRF) has been shown to improve metabolic responses by regulating circadian clocks but whether it acts synergically with exercise remains unknown. It is hypothesized that forced exercise alone or combined with tRF alleviates obesity and its metabolic complications. METHODS AND RESULTS: Male C57bl6 mice are fed with high-fat or a control diet for 12 weeks either ad libitum or tRF for 10 h during their active period. High-fat diet (HFD)-fed mice are divided into exercise (treadmill for 1 h at 12 m min-1 alternate days for 9 weeks and 16 m min-1 daily for the following 3 weeks) and non-exercise groups. tRF and tRF-Ex significantly decreased body weight, food intake, and plasma lipids, and improved glucose tolerance. However, exercise reduced only body weight and plasma lipids. tRF and tRF-Ex significantly downregulated Fasn, Hmgcr, and Srebp1c, while exercise only Hmgcr. HFD feeding disrupted clock genes, but exercise, tRF, and tRF-Ex coordinated the circadian clock genes Bmal1, Per2, and Rev-Erbα in the liver, adipose tissue, and skeletal muscles. CONCLUSION: HFD feeding disrupted clock genes in the peripheral organs while exercise, tRF, and their combination restored clock genes and improved metabolic consequences induced by high-fat diet feeding.


Assuntos
Relógios Circadianos , Dieta Hiperlipídica , Animais , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Peso Corporal , Ritmo Circadiano/fisiologia , Exercício Físico , Lipídeos
5.
Curr Mol Pharmacol ; 16(8): 811-831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36624644

RESUMO

Type-2 diabetes mellitus is a prime factor for the development of Diabetic Nephropathy (DN) that affects the vital organ namely the kidneys, and further alters the functions of the nephron system. DN is nowadays becoming a challenge for scientists towards the world because of its high pervasiveness and complexity of medication. Various risk factors are involved in the initiation of pathogenic DN, which are associated with different pathways against drug activity. Due to this DN becomes an unpredictable query to the researchers. SIRT1 is a silent information regulator factor 2 related enzyme 1 (SIRT1) is nicotinamide adenine dinucleotide (NAD+) dependent deacetylase that functions as an intracellular regulator of transcriptional activity. An activated version of SIRT-1 improves the metabolic diseased conditions associated with other molecular pathways. SIRT1 attenuates diabetic nephropathy in in vitro and in vivo experimental models of diabetes containing Podocytes, Mesangial cells, and Renal proximal tubular cells. SIRT1 shows nephroprotective effects in DN in part through deacetylation of transcription factors i.e., imply in the disease like p53, PTP1B, FOXO, RelA, NF- kß, STAT-3, and PGC-1α/ PPARγ. It has been shown that some natural products like resveratrol and synthetic compounds are activating the SIRT1, this further involved the cascade pathways to prevent the DN. This review will help regarding the effectiveness of SIRT1as target in the prevention and treatment of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Doenças Metabólicas , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Sirtuína 1/metabolismo , Transdução de Sinais , Rim , Fatores de Transcrição
6.
Mol Nutr Food Res ; 66(19): e2200192, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35938221

RESUMO

Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo YY , Apetite , Colo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevenção & controle , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Humanos , Nutrientes , Obesidade/metabolismo , Obesidade/prevenção & controle , Peptídeo YY/metabolismo
7.
3 Biotech ; 12(7): 147, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35720958

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the major hepatic metabolic disorders that occurs because of the accumulation of lipids in hepatocytes in the form of free fatty acids (FFA) and triglycerides (TG) which become non-alcoholic steatohepatitis (NASH). NOTCH-1 receptors act as novel targets for the development of NAFLD/NASH, where overexpression of NOTCH-1 receptor alters the lipid metabolism in hepatocytes leading to NAFLD. SIRT-1 deacetylates the NOTCH-1 receptor and inhibits NAFLD. Hence, computer-aided drug design (CADD) was used to check the SIRT-1 activation ability of cinnamic sulfonyl hydroxamate derivatives (NMJ 1-8), resveratrol, and vorinostat. SIRT-1 (PDB ID: 5BTR) was docked with eight hydroxamate derivatives and vorinostat using Schrödinger software. Based on binding energy obtained (- 26.31 to - 47.34 kcal/mol), vorinostat, NMJ-2, NMJ-3, NMJ-5 were selected for induced-fit docking (IFD) and results were within - 750.70 to - 753.22 kcal/mol. Qikprop tool was used to analyse the pre pharmacokinetic parameters (ADME analysis) of all hydroxamate compounds. As observed in the molecular dynamic (MD) study, NMJ-2, NMJ-3 were showing acceptable results for activation of SIRT-1. Based on these predictions, in-vivo studies were conducted in CF1 mice, where NMJ-3 showed significant (p < 0.05) changes in lipid profile and anti-oxidant parameters (Catalase, SOD, GSH, nitrite, and LPO) and plasma insulin levels. NMJ-3 treatment also reduced inflammation, fibrosis, and necrosis in liver samples.

8.
Mini Rev Med Chem ; 21(13): 1747-1769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33655830

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) outbreak was declared as an emerging global public health concern on 30th January 2020. This novel coronavirus (SARS-CoV-2) outbreak was first identified in Wuhan city, China, which soon affected around 185 countries and territories all over the world through various transmission mechanisms. To date, no permanent cure has been found, due to which this pandemic threatens humanity for its very existence. OBJECTIVE: In light of the rising menace, this review aims at providing collective and prominent information on the current outbreak, covering its origin, structure, transmission, clinical features, potential treatment approaches, and clinical trial details. METHODS: The literature published in Scopus and PubMed indexed journals were reviewed, and clinical trial data was retrieved from the ClinicalTrials.gov database. RESULTS: Present review puts forth detailed insights on history, epidemiology, structure, genetic makeup, reservoirs, entry mechanisms, reproduction capacity, pathogenesis, routes of transmission, clinical features, diagnostics, the role of chloroquine in treatment, current promising therapies, and vaccination trials. CONCLUSION: At present, early detection, isolation of infected patients, and supportive care with a few recently USFDA approved alternative medications are being used as per the standard government guidelines. Due to insufficient availability of proof regarding current therapies to produce therapeutic activity against COVID-19, safety precautions, prevention methods, hygiene maintenance and management therapy with intensive care medicine is the only way to fight this current situation.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Saúde Global , Humanos
9.
Med Chem ; 17(4): 380-395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32720605

RESUMO

BACKGROUND: Globally, over 4.3 million laboratory confirmed cases of COVID-19 have been reported from over 105 countries. No FDA approved antiviral is available for the treatment of this infection. Zhavoronkov et al., with their generative chemistry pipeline, have generated structures that can be potential novel drug-like inhibitors for COVID-19, provided they are validated. 3C-like protease (3CLP) is a homodimeric cysteine protease that is present in coronaviruses. Interestingly, 3CLP is 96.1% structurally similar between SARS-CoV and SARS-CoV-2. OBJECTIVE: To evaluate interaction of generated structures with 3CLP of SARS-CoV (RCSB PDB ID: 4MDS). METHODS: Crystal structure of human SARS-CoV with a non-covalent inhibitor with resolution: 1.598 Å was obtained and molecular docking was performed to evaluate the interaction with generated structures. The MM-GBSA and IFD-SP were performed to narrow down to the structures with better binding energy and IFD score. The ADME analysis was performed on top 5 hits and further MD simulation was employed for top 2 hits. RESULTS: In XP docking, IFD-SP and molecular dynamic simulation studies, the top 2 hits 32 and 61 showed interaction with key amino acid residue GLU166. Structure 61, also showed interaction with HIS164. These interactions of generated structure 32 and 61, with GLU166 and HIS164, indicate the binding of the selected drug within the close proximity of 3CLP. In the MD simulation, the protein- ligand complex of 4MDS and structure 61 was found to be more stable for 10ns. CONCLUSION: These identified structures can be further assessed for their antiviral activity to combat SARS-CoV and COVID-19.


Assuntos
Antivirais/química , Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , SARS-CoV-2/química , Bibliotecas de Moléculas Pequenas/química , Antivirais/metabolismo , Domínio Catalítico , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica , Interface Usuário-Computador , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA