Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Small ; 17(32): e2101207, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216428

RESUMO

Severe cardiac damage following myocardial infarction (MI) causes excessive inflammation, which sustains tissue damage and often induces adverse cardiac remodeling toward cardiac function impairment and heart failure. Timely resolution of post-MI inflammation may prevent cardiac remodeling and development of heart failure. Cell therapy approaches for MI are time-consuming and costly, and have shown marginal efficacy in clinical trials. Here, nanoparticles targeting the immune system to attenuate excessive inflammation in infarcted myocardium are presented. Liposomal nanoparticles loaded with MI antigens and rapamycin (L-Ag/R) enable effective induction of tolerogenic dendritic cells presenting the antigens and subsequent induction of antigen-specific regulatory T cells (Tregs). Impressively, intradermal injection of L-Ag/R into acute MI mice attenuates inflammation in the myocardium by inducing Tregs and an inflammatory-to-reparative macrophage polarization, inhibits adverse cardiac remodeling, and improves cardiac function. Nanoparticle-mediated blocking of excessive inflammation in infarcted myocardium may be an effective intervention to prevent the development of post-MI heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Nanopartículas , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/prevenção & controle , Inflamação , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/complicações , Miocárdio
2.
Nano Lett ; 19(8): 5185-5193, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298024

RESUMO

Liposomes are clinically used as drug carriers for cancer therapy; however, unwanted leakage of the encapsulated anticancer drug and poor tumor-targeting efficiency of liposomes may generate toxic side effects on healthy cells and lead to failure of tumor eradication. To overcome these limitations, we functionalized liposomes with a photosensitizer (KillerRed, KR)-embedded cancer cell membrane (CCM). A lipid adjuvant was also embedded in the lipocomplex to promote the anticancer immune response. KR proteins were expressed on CCM and did not leak from the lipocomplex. Owing to the homotypic affinity of the CCM for the source cancer cells, the lipocomplex exhibited a 3.3-fold higher cancer-targeting efficiency in vivo than a control liposome. The liposome functionalized with KR-embedded CCM and lipid adjuvant generated cytotoxic reactive oxygen species in photodynamic therapy and effectively induced anticancer immune responses, inhibiting primary tumor growth and lung metastasis in homotypic tumor-bearing mice. Taken together, the lipocomplex technology may improve liposome-based cancer therapy.


Assuntos
Fatores Imunológicos/uso terapêutico , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Linhagem Celular Tumoral , Membrana Celular/patologia , Proteínas de Fluorescência Verde/uso terapêutico , Humanos , Camundongos , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neoplasias/patologia
3.
Adv Mater ; 35(3): e2207719, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36329674

RESUMO

Alzheimer's disease (AD), the most common cause of dementia, is a complex condition characterized by multiple pathophysiological mechanisms including amyloid-ß (Aß) plaque accumulation and neuroinflammation in the brain. The current immunotherapy approaches, such as anti-Aß monoclonal antibody (mAb) therapy, Aß vaccines, and adoptive regulatory T (Treg) cell transfer, target a single pathophysiological mechanism, which may lead to unsatisfactory therapeutic efficacy. Furthermore, Aß vaccines often induce T helper 1 (Th1) cell-mediated inflammatory responses. Here, a nanovaccine composed of lipid nanoparticles loaded with Aß peptides and rapamycin is developed, which targets multiple pathophysiological mechanisms, exhibits the combined effects of anti-Aß antibody therapy and adoptive Aß-specific Treg cell transfer, and can overcome the limitations of current immunotherapy approaches for AD. The Nanovaccine effectively delivers rapamycin and Aß peptides to dendritic cells, produces both anti-Aß antibodies and Aß-specific Treg cells, removes Aß plaques in the brain, alleviates neuroinflammation, prevents Th1 cell-mediated excessive immune responses, and inhibits cognitive impairment in mice. The nanovaccine shows higher efficacy in cognitive recovery than an Aß vaccine. Unlike anti-Aß mAb therapy and adoptive Treg cell transfer, both of which require complicated and costly manufacturing processes, the nanovaccine is easy-to-prepare and cost-effective. The nanovaccines can represent a novel treatment option for AD.


Assuntos
Doença de Alzheimer , Vacinas , Camundongos , Animais , Linfócitos T Reguladores , Doenças Neuroinflamatórias , Camundongos Transgênicos , Peptídeos beta-Amiloides , Anticorpos Monoclonais , Modelos Animais de Doenças
4.
Nat Nanotechnol ; 18(12): 1502-1514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37884660

RESUMO

Commencing with the breakdown of immune tolerance, multiple pathogenic factors, including synovial inflammation and harmful cytokines, are conjointly involved in the progression of rheumatoid arthritis. Intervening to mitigate some of these factors can bring a short-term therapeutic effect, but other unresolved factors will continue to aggravate the disease. Here we developed a ceria nanoparticle-immobilized mesenchymal stem cell nanovesicle hybrid system to address multiple factors in rheumatoid arthritis. Each component of this nanohybrid works individually and also synergistically, resulting in comprehensive treatment. Alleviation of inflammation and modulation of the tissue environment into an immunotolerant-favourable state are combined to recover the immune system by bridging innate and adaptive immunity. The therapy is shown to successfully treat and prevent rheumatoid arthritis by relieving the main symptoms and also by restoring the immune system through the induction of regulatory T cells in a mouse model of collagen-induced arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Imunidade Adaptativa , Citocinas , Inflamação
5.
ACS Biomater Sci Eng ; 8(5): 1921-1929, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35416659

RESUMO

The vast majority of drug-eluting stents (DES) elute either sirolimus or one of its analogues. While limus drugs stymie vascular smooth muscle cell (VSMC) proliferation to prevent in-stent restenosis, their antiproliferative nature is indiscriminate and limits healing of the endothelium in stented vessels, increasing the risk of late-stent thrombosis. Oxidative stress, which is associated with vascular injury from stent implantation, can induce VSMCs to undergo senescence, and senescent VSMCs can produce pro-inflammatory cytokines capable of inducing proliferation of neighboring nonsenescent VSMCs. We explored the potential of senolytic therapy, which involves the selective elimination of senescent cells, in the form of a senolytic-eluting stent (SES) for interventional cardiology. Oxidative stress was modeled in vitro by exposing VSMCs to H2O2, and H2O2-mediated senescence was evaluated by cytochemical staining of senescence-associated ß-galactosidase activity and qRT-PCR. Quiescent VSMCs were then treated with the conditioned medium (CM) of H2O2-treated VSMCs. Proliferative effects of CM were analyzed by staining for proliferating cell nuclear antigen. Senolytic effects of the first-generation senolytic ABT263 were observed in vitro, and the effects of ABT263 on endothelial cells were also investigated through an in vitro re-endothelialization assay. SESs were prepared by dip coating. Iliofemoral arteries of hypercholesteremic rabbits were implanted with SES, everolimus-eluting stents (EESs), or bare-metal stents (BMSs), and the area of stenosis was measured 4 weeks post-implantation using optical coherence tomography. We found that a portion of H2O2-treated VSMCs underwent senescence, and that CM of H2O2-treated senescent VSMCs triggered the proliferation of quiescent VSMCs. ABT263 reverted H2O2-mediated senescence and the proliferative capacity of senescent VSMC CM. Unlike everolimus, ABT263 did not affect endothelial cell migration and/or proliferation. SES, but not EES, significantly reduced stenosis area in vivo compared with bare-metal stents (BMSs). This study shows the potential of SES as an alternative to current forms of DES.


Assuntos
Reestenose Coronária , Stents Farmacológicos , Animais , Constrição Patológica , Reestenose Coronária/prevenção & controle , Stents Farmacológicos/efeitos adversos , Células Endoteliais , Everolimo/farmacologia , Peróxido de Hidrogênio/farmacologia , Coelhos , Senoterapia , Stents
6.
Sci Adv ; 8(47): eabo5284, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427299

RESUMO

Local inflammation in the joint is considered to contribute to osteoarthritis (OA) progression. Here, we describe an immunomodulating nanoparticle for OA treatment. Intradermal injection of lipid nanoparticles (LNPs) loaded with type II collagen (Col II) and rapamycin (LNP-Col II-R) into OA mice effectively induced Col II-specific anti-inflammatory regulatory T cells, substantially increased anti-inflammatory cytokine expression, and reduced inflammatory immune cells and proinflammatory cytokine expression in the joints. Consequently, LNP-Col II-R injection inhibited chondrocyte apoptosis and cartilage matrix degradation and relieved pain, while injection of LNPs loaded with a control peptide and rapamycin did not induce these events. Adoptive transfer of CD4+CD25+ T cells isolated from LNP-Col II-R-injected mice suggested that Tregs induced by LNP-Col II-R injection were likely responsible for the therapeutic effects. Collectively, this study suggests nanoparticle-mediated immunomodulation in the joint as a simple and effective treatment for OA.


Assuntos
Nanopartículas , Osteoartrite , Camundongos , Animais , Colágeno Tipo II/efeitos adversos , Linfócitos T Reguladores/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/uso terapêutico , Sirolimo/farmacologia
7.
Tissue Eng Regen Med ; 18(5): 807-818, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34251653

RESUMO

BACKGROUND: Various cell-culture systems have been used to evaluate drug toxicity in vitro. However, factors that affect cytotoxicity outcomes in drug toxicity evaluation systems remain elusive. In this study, we used multilayered sheets of cardiac-mimetic cells, which were reprogrammed from human fibroblasts, to investigate the effects of the layer number on drug cytotoxicity outcomes. METHODS: Cell sheets of cardiac-mimetic cells were fabricated by reprogramming of human fibroblasts into cardiac-mimetic cells via coculture with cardiac cells and electric stimulation, as previously described. Double-layered cell sheets were prepared by stacking the cell sheets. The mono- and double-layered cell sheets were treated with 5-fluorouracil (5-FU), an anticancer drug, in vitro. Subsequently, apoptosis and lipid peroxidation were analyzed. Furthermore, effects of cardiac-mimetic cell density on cytotoxicity outcomes were evaluated by culturing cells in monolayer at various cell densities. RESULTS: The double-layered cell sheets exhibited lower cytotoxicity in terms of apoptosis and lipid peroxidation than the mono-layered sheets at the same 5-FU dose. In addition, the double-layered cell sheets showed better preservation of mitochondrial function and plasma membrane integrity than the monolayer sheets. The lower cytotoxicity outcomes in the double-layered cell sheets may be due to the higher intercellular interactions, as the cytotoxicity of 5-FU decreased with cell density in monolayer cultures of cardiac-mimetic cells. CONCLUSION: The layer number of cardiac-mimetic cell sheets affects drug cytotoxicity outcomes in drug toxicity tests. The in vitro cellular configuration that more closely mimics the in vivo configuration in the evaluation systems seems to exhibit lower cytotoxicity in response to drug.


Assuntos
Coração , Preparações Farmacêuticas , Células Cultivadas , Técnicas de Cocultura , Fibroblastos , Humanos
8.
Adv Healthc Mater ; 9(5): e1901612, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31977158

RESUMO

Osteoarthritis (OA) is a painful intractable disease that significantly affects patients' quality of life. However, current therapies, such as pain killers and joint replacement surgery, do not lead to cartilage protection. Mesenchymal stem cells (MSCs) have been proposed as an alternative strategy for OA therapy because MSCs can secrete chondroprotective and anti-inflammatory factors. However, interleukin-4 (IL-4), a potent anti-inflammatory cytokine, is barely produced by MSCs, and MSC therapy suffers from rapid MSC death following intra-articular implantation. MSCs in spheroids survive better than naïve MSCs in vitro and in vivo. IL-4-transfected MSCs in spheroids (IL-4 MSC spheroid) show increased chondroprotective and anti-inflammatory effects in an OA chondrocyte model in vitro. Following intra-articular implantation in OA rats, IL-4 MSC spheroids show better cartilage protection and pain relief than naïve MSCs. Thus, IL-4 MSC spheroid may potentiate the therapeutic efficacy of MSCs for OA.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite , Animais , Humanos , Injeções Intra-Articulares , Interleucina-4 , Osteoartrite/terapia , Qualidade de Vida , Ratos , Transfecção
9.
Adv Mater ; 32(39): e2003368, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32812291

RESUMO

Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70-80% of patients. To address some of the challenges faced by the current cancer treatments, here T-cell-membrane-coated nanoparticles (TCMNPs) are developed for cancer immunotherapy. Similar to cytotoxic T cells, TCMNPs can be targeted at tumors via T-cell-membrane-originated proteins and kill cancer cells by releasing anticancer molecules and inducing Fas-ligand-mediated apoptosis. Unlike cytotoxic T cells, TCMNPs are resistant to immunosuppressive molecules (e.g., transforming growth factor-ß1 (TGF-ß1)) and programmed death-ligand 1 (PD-L1) of cancer cells by scavenging TGF-ß1 and PD-L1. Indeed, TCMNPs exhibit higher therapeutic efficacy than an immune checkpoint blockade in melanoma treatment. Furthermore, the anti-tumoral actions of TCMNPs are also demonstrated in the treatment of lung cancer in an antigen-nonspecific manner. Taken together, TCMNPs have a potential to improve the current cancer immunotherapy.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Imunoterapia/métodos , Nanopartículas/uso terapêutico , Linfócitos T/imunologia , Linhagem Celular Tumoral , Humanos , Nanomedicina
10.
Theranostics ; 9(23): 6734-6744, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660065

RESUMO

Rationale: Cardiovascular diseases often cause substantial heart damage and even heart failure due to the limited regenerative capacity of adult cardiomyocytes. The direct cardiac reprogramming of fibroblasts could be a promising therapeutic option for these patients. Although exogenous transcriptional factors can induce direct cardiac reprogramming, the reprogramming efficiency is too low to be used clinically. Herein, we introduce a cardiac-mimetic cell-culture system that resembles the microenvironment in the heart and provides interactions with cardiomyocytes and electrical cues to the cultured fibroblasts for direct cardiac reprogramming. Methods: Nano-thin and nano-porous membranes and heart like electric stimulus were used in the cardiac-mimetic cell-culture system. The human neonatal dermal fibroblasts containing cardiac transcription factors were plated on the membrane and cultured with the murine cardiomyocyte in the presence of the electric stimulus. The reprogramming efficiency was evaluated by qRT-PCR and immunocytochemistry. Results: Nano-thin and nano-porous membranes in the culture system facilitated interactions between fibroblasts and cardiomyocytes in coculture. The cellular interactions and electric stimulation supplied by the culture system dramatically enhanced the cardiac reprogramming efficiency of cardiac-specific transcriptional factor-transfected fibroblasts. Conclusion: The cardiac-mimetic culture system may serve as an effective tool for producing a feasible number of reprogrammed cardiomyocytes from fibroblasts.


Assuntos
Biomimética/métodos , Técnicas de Reprogramação Celular/métodos , Miócitos Cardíacos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Comunicação Celular , Transdiferenciação Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Recém-Nascido , Masculino , Potenciais da Membrana , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
ACS Nano ; 13(3): 3206-3217, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30830763

RESUMO

Poor O2 supply to the infiltrated immune cells in the joint synovium of rheumatoid arthritis (RA) up-regulates hypoxia-inducible factor (HIF-1α) expression and induces reactive oxygen species (ROS) generation, both of which exacerbate synovial inflammation. Synovial inflammation in RA can be resolved by eliminating pro-inflammatory M1 macrophages and inducing anti-inflammatory M2 macrophages. Because hypoxia and ROS in the RA synovium play a crucial role in the induction of M1 macrophages and reduction of M2 macrophages, herein, we develop manganese ferrite and ceria nanoparticle-anchored mesoporous silica nanoparticles (MFC-MSNs) that can synergistically scavenge ROS and produce O2 for reducing M1 macrophage levels and inducing M2 macrophages for RA treatment. MFC-MSNs exhibit a synergistic effect on O2 generation and ROS scavenging that is attributed to the complementary reaction of ceria nanoparticles (NPs) that can scavenge intermediate hydroxyl radicals generated by manganese ferrite NPs in the process of O2 generation during the Fenton reaction, leading to the efficient polarization of M1 to M2 macrophages both in vitro and in vivo. Intra-articular administration of MFC-MSNs to rat RA models alleviated hypoxia, inflammation, and pathological features in the joint. Furthermore, MSNs were used as a drug-delivery vehicle, releasing the anti-rheumatic drug methotrexate in a sustained manner to augment the therapeutic effect of MFC-MSNs. This study highlights the therapeutic potential of MFC-MSNs that simultaneously generate O2 and scavenge ROS, subsequently driving inflammatory macrophages to the anti-inflammatory subtype for RA treatment.


Assuntos
Acetatos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Cério/farmacologia , Compostos Férricos/farmacologia , Compostos de Manganês/farmacologia , Nanopartículas/química , Acetatos/síntese química , Acetatos/química , Animais , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cério/química , Modelos Animais de Doenças , Compostos Férricos/síntese química , Compostos Férricos/química , Adjuvante de Freund , Masculino , Compostos de Manganês/síntese química , Compostos de Manganês/química , Oxigênio/metabolismo , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Propriedades de Superfície
12.
ACS Biomater Sci Eng ; 4(7): 2571-2581, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435120

RESUMO

Stem cell therapy has great potential for the treatment of ischemic diseases, but poor engraftment of implanted stem cells limits the therapeutic efficacy. Here, we developed an approximately 80 µm injectable decellularized matrix (IDM) to increase the angiogenic efficacy of mesenchymal stem cells by improving the engraftment of the stem cells implanted in to an ischemic tissue. Adhesion of human adipose tissue-derived stem cells (hADSCs) to the IDM enhanced the cell viability and upregulated angiogenic factors in vitro under either cell adhesion-suppressive conditions or hypoxic conditions, which simulated the microenvironment of ischemic tissues. In a murine ischemic-hindlimb model, hADSCs that were attached to the IDM and subsequently injected into an ischemic region showed better grafting and angiogenic factor expression. The hADSC-IDM implantation subsequently promoted the formation of microvessels, attenuated fibrosis, and increased blood perfusion in the ischemic region, as compared to implantation of hADSCs only. The IDM may be an effective off-the-shelf material that can enhance therapeutic efficacy of stem cell therapy for ischemic diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA