Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur J Immunol ; 53(2): e2249940, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250419

RESUMO

Primary and recurrent cytomegalovirus (CMV) infections frequently cause CMV colitis in immunocompromised as well as inflammatory bowel disease (IBD) patients. Additionally, colitis occasionally occurs upon primary CMV infection in patients who are apparently immunocompetent. In both cases, the underlying pathophysiologic mechanisms are largely elusive - in part due to the lack of adequate access to specimens. We employed the mouse cytomegalovirus (MCMV) model to assess the association between CMV and colitis. During acute primary MCMV infection of immunocompetent mice, the gut microbial composition was affected as manifested by an altered ratio of the Firmicutes to Bacteroidetes phyla. Interestingly, these microbial changes coincided with high-titer MCMV replication in the colon, crypt hyperplasia, increased colonic pro-inflammatory cytokine levels, and a transient increase in the expression of the antimicrobial protein Regenerating islet-derived protein 3 gamma (Reg3γ). Further analyses revealed that murine and human intestinal epithelial cell lines, as well as primary intestinal crypt cells and organoids represent direct targets of CMV infection causing increased cell death. Accordingly, in vivo MCMV infection disrupted the intestinal epithelial barrier and increased apoptosis of intestinal epithelial cells. In summary, our data show that CMV transiently induces colitis in immunocompetent hosts by altering the intestinal homeostasis.


Assuntos
Colite , Infecções por Citomegalovirus , Microbioma Gastrointestinal , Muromegalovirus , Humanos , Animais , Camundongos , Citomegalovirus , Células Epiteliais/metabolismo
2.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893345

RESUMO

Among brain tumors, glioblastoma (GBM) is very challenging to treat as chemotherapeutic drugs can only penetrate the brain to a limited extent due to the blood-brain barrier (BBB). Nanoparticles can be an attractive solution for the treatment of GBM as they can transport drugs across the BBB into the tumor. In this study, normal and GBM organoids comprising six brain cell types were developed and applied to study the uptake, BBB penetration, distribution, and efficacy of fluorescent, ultrasmall gold nanoparticles (AuTio-Dox-AF647s) conjugated with doxorubicin (Dox) and AlexaFluor-647-cadaverine (AF647) by confocal laser scanning microscopy (CLSM), using a mixture of dissolved doxorubicin and fluorescent AF647 molecules as a control. It was shown that the nanoparticles could easily penetrate the BBB and were found in normal and GBM organoids, while the dissolved Dox and AF647 molecules alone were unable to penetrate the BBB. Flow cytometry showed a reduction in glioblastoma cells after treatment with AuTio-Dox nanoparticles, as well as a higher uptake of these nanoparticles by GBM cells in the GBM model compared to astrocytes in the normal cell organoids. In summary, our results show that ultrasmall gold nanoparticles can serve as suitable carriers for the delivery of drugs into organoids to study BBB function.


Assuntos
Barreira Hematoencefálica , Doxorrubicina , Glioblastoma , Ouro , Nanopartículas Metálicas , Organoides , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Nanopartículas Metálicas/química , Ouro/química , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral
3.
Small ; 18(31): e2201167, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35712760

RESUMO

Ultrasmall gold nanoparticles (2 nm) easily penetrate the membranes of intestinal murine epithelial cells (MODE-K) and colorectal cancer cells (CT-26). They are also taken up by 3D spheroids (400 µm) of these cell types and primary gut organoids (500 µm). In contrast, dissolved dyes are not taken up by any of these cells or 3D structures. The distribution of fluorescent ultrasmall gold nanoparticles inside cells, spheroids, and gut organoids is examined by confocal laser scanning microscopy. Nanoparticles conjugated with the cytostatic drug doxorubicin and a fluorescent dye exhibit significantly greater cytotoxicity toward CT-26 tumor spheroids than equally concentrated dissolved doxorubicin, probably because they enter the interior of a spheroid much more easily than dissolved doxorubicin. Comprehensive analyses show that the cellular uptake of ultrasmall gold nanoparticles occurs by different endocytosis pathways.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Doxorrubicina/química , Doxorrubicina/farmacologia , Ouro , Humanos , Camundongos , Esferoides Celulares
4.
Chemistry ; 27(27): 7471-7488, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33577710

RESUMO

Calcium phosphate nanoparticles have a high biocompatibility and biodegradability due to their chemical similarity to human hard tissue, for example, bone and teeth. They can be used as efficient carriers for different kinds of biomolecules such as nucleic acids, proteins, peptides, antibodies, or drugs, which alone are not able to enter cells where their biological effect is required. They can be loaded with cargo molecules by incorporating them, unlike solid nanoparticles, and also by surface functionalization. This offers protection, for example, against nucleases, and the possibility for cell targeting. If such nanoparticles are functionalized with fluorescing dyes, they can be applied for imaging in vitro and in vivo. Synthesis, functionalization and cell uptake mechanisms of calcium phosphate nanoparticles are discussed together with applications in transfection, gene silencing, imaging, immunization, and bone substitution. Biodistribution data of calcium phosphate nanoparticles in vivo are reviewed.


Assuntos
Nanopartículas , Ácidos Nucleicos , Fosfatos de Cálcio , Humanos , Distribuição Tecidual , Transfecção
5.
J Mater Sci Mater Med ; 31(11): 102, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33140175

RESUMO

Porous scaffolds of poly(lactide-co-glycolide) (PLGA; 85:15) and nano-hydroxyapatite (nHAP) were prepared by an emulsion-precipitation procedure from uniform PLGA-nHAP spheres (150-250 µm diameter). These spheres were then thermally sintered at 83 °C to porous scaffolds that can serve for bone tissue engineering or for bone substitution. The base materials PLGA and nHAP and the PLGA-nHAP scaffolds were extensively characterized by X-ray powder diffraction, infrared spectroscopy, thermogravimetry, differential scanning calorimetry, and scanning electron microscopy. The scaffold porosity was about 50 vol% as determined by relating mass and volume of the scaffolds, together with the computed density of the solid phase (PLGA-nHAP). The cultivation of HeLa cells demonstrated their high cytocompatibility. In combination with DNA-loaded calcium phosphate nanoparticles, they showed a good activity of gene transfection with enhanced green fluorescent protein (EGFP) as model protein. This is expected enhance bone growth around an implanted scaffold or inside a scaffold for tissue engineering.


Assuntos
Osso e Ossos/metabolismo , Fosfatos de Cálcio/química , DNA/química , Durapatita/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Engenharia Tecidual/instrumentação , Alicerces Teciduais , Anisotropia , Cálcio/química , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Microesferas , Nanopartículas/química , Porosidade , Solventes , Temperatura , Termogravimetria , Engenharia Tecidual/métodos , Difração de Raios X
6.
Genes Cells ; 21(7): 682-95, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27238217

RESUMO

This study aimed to fabricate a growth factor-releasing biodegradable scaffold for tissue regeneration. We prepared multishell calcium phosphate (CaP) nanoparticles functionalized with DNA, polyethyleneimine (PEI), protamine and octa-arginine (R8) and compared their respective transfection activity and cell viability measures using human mesenchymal stem cells. DNA-protamine complexes improved the transfection efficiency of CaP nanoparticles with the exception of those functionalized with R8. These complexes also greatly reduced the cytotoxicity of PEI. In addition, we also fabricated DNA-protamine-functionalized CaP nanoparticle-loaded nano-hydroxyapatite-collagen scaffolds and investigated their gene transfection efficiencies. These experiments showed that the scaffolds were associated with moderate hMSC cell viability and were capable of releasing the BMP-2 protein into hMSCs following gene transfection. In particular, the scaffold loaded with protamine-containing CaP nanoparticles showed the highest cell viability and transfection efficiency in hMSCs; thus, it might be suitable to serve as an efficient growth factor-releasing scaffold.


Assuntos
Colágeno/uso terapêutico , Durapatita/uso terapêutico , Técnicas de Transferência de Genes , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Regeneração , Células da Medula Óssea/efeitos dos fármacos , Proteína Morfogenética Óssea 2/genética , Fosfatos de Cálcio/química , Sobrevivência Celular/efeitos dos fármacos , Colágeno/química , Durapatita/química , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/uso terapêutico , Plasmídeos/genética , Alicerces Teciduais , Transfecção
7.
Nanomedicine ; 13(1): 173-182, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27593489

RESUMO

Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo.


Assuntos
Linfócitos B/efeitos dos fármacos , Imunidade Humoral , Nanopartículas/química , Receptores Toll-Like/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Antígenos/administração & dosagem , Linfócitos B/imunologia , Fosfatos de Cálcio/química , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Injeções Intramusculares , Ligantes , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Muramidase/química , Nanopartículas/administração & dosagem , Receptores de Antígenos de Linfócitos B/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
8.
Retrovirology ; 13: 24, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27076190

RESUMO

BACKGROUND: Regulatory T cells (Tregs) have been shown to limit anti-viral immunity during chronic retroviral infection and to restrict vaccine-induced T cell responses. The objective of the study was to assess whether a combinational therapy of nanoparticle-based therapeutic vaccination and concomitant transient ablation of Tregs augments anti-viral immunity and improves virus control in chronically retrovirus-infected mice. Therefore, chronically Friend retrovirus (FV)-infected mice were immunized with calcium phosphate (CaP) nanoparticles functionalized with TLR9 ligand CpG and CD8(+) or CD4(+) T cell epitope peptides (GagL85-93 or Env gp70123-141) of FV. In addition, Tregs were ablated during the immunization process. Reactivation of CD4(+) and CD8(+) effector T cells was analysed and the viral loads were determined. RESULTS: Therapeutic vaccination of chronically FV-infected mice with functionalized CaP nanoparticles transiently reactivated cytotoxic CD8(+) T cells and significantly reduced the viral loads. Transient ablation of Tregs during nanoparticle-based therapeutic vaccination strongly enhanced anti-viral immunity and further decreased viral burden. CONCLUSION: Our data illustrate a crucial role for CD4(+) Foxp3(+) Tregs in the suppression of anti-viral T cell responses during therapeutic vaccination against chronic retroviral infection. Thus, the combination of transient Treg ablation and therapeutic nanoparticle-based vaccination confers robust and sustained anti-viral immunity.


Assuntos
Leucemia Experimental/terapia , Procedimentos de Redução de Leucócitos , Nanopartículas/administração & dosagem , Infecções por Retroviridae/terapia , Linfócitos T Reguladores/imunologia , Infecções Tumorais por Vírus/terapia , Vacinas Virais/administração & dosagem , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Terapia Combinada/métodos , Vírus da Leucemia Murina de Friend/imunologia , Leucemia Experimental/imunologia , Camundongos Endogâmicos C57BL , Infecções por Retroviridae/imunologia , Resultado do Tratamento , Infecções Tumorais por Vírus/imunologia
9.
J Immunol ; 190(12): 6221-9, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23667109

RESUMO

The ability of vaccines to induce T cell responses is crucial for preventing diseases caused by viruses or bacteria. Nanoparticles (NPs) are considered an efficient tool for inducing potent immune responses. In this study, we describe a novel vaccination approach with biodegradable calcium phosphate (CaP) NPs that serve as carrier of immunoactive TLR9 ligand (CpG) combined with a viral Ag from the influenza A virus hemagglutinin. Functionalized CaP NPs were efficiently taken up by dendritic cells in vivo and elicited a potent T cell-mediated immune response in immunized mice with high numbers of IFN-γ-producing CD4(+) and CD8(+) effector T cells. Most importantly, both i.p. and intranasal immunization with these NPs offered protection in a mouse model of influenza virus infection. This study demonstrates the great potential of CaP NPs as a novel vaccination tool that offers substantial flexibility for several infection models.


Assuntos
Imunidade Celular/imunologia , Vacinas contra Influenza/imunologia , Nanopartículas , Vacinação/métodos , Administração Intranasal , Animais , Fosfatos de Cálcio/farmacologia , Citometria de Fluxo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Injeções Intraperitoneais , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Linfócitos T/imunologia
10.
Nanomedicine ; 10(8): 1787-98, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25014891

RESUMO

Retroviral infections e.g. HIV still represent a unique burden in the field of vaccine research. A common challenge in vaccine design is to find formulations that create appropriate immune responses to protect against and/or control the given pathogen. Nanoparticles have been considered to be ideal vaccination vehicles that mimic invading pathogens. In this study, we present biodegradable calcium phosphate (CaP) nanoparticles, functionalized with CpG and retroviral T cell epitopes of Friend virus (FV) as excellent vaccine delivery system. CaP nanoparticles strongly increased antigen delivery to antigen-presenting cells to elicit a highly efficient T cell-mediated immune response against retroviral FV infection. Moreover, single-shot immunization of chronically FV-infected mice with functionalized CaP nanoparticles efficiently reactivated effector T cells which led to a significant decrease in viral loads. Thus, our findings clearly indicate that a nanoparticle-based peptide immunization is a promising approach to improve antiretroviral vaccination. FROM THE CLINICAL EDITOR: In this study, biodegradable calcium phosphate nanoparticles were used as a vaccine delivery system after functionalization with CpG and Friend virus-derived T-cell epitopes. This vaccination strategy resulted in increased T-cell mediated immune response even in chronically infected mice, providing a promising approach to the development of clinically useful antiretroviral vaccination strategies.


Assuntos
Imunidade Celular/imunologia , Nanopartículas/química , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/prevenção & controle , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular , Citometria de Fluxo , Camundongos
11.
Regen Ther ; 25: 49-60, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38089138

RESUMO

Introduction: During tissue repair or regeneration, several bioactive molecules are released and interact with each other and act as complex additives or inhibitors for tissue reconstruction. In this study, the bone-healing effects of the combination treatment with tumor necrosis factor-α (TNF-α) inhibition, vascular endothelial growth factor A (VEGF-A) and bone morphogenetic protein-7 (BMP-7) release by gene silencing, and gene transfection with calcium phosphate nanoparticles (CaP) in the rat femoral head was histologically, morphologically, and biochemically evaluated. Methods: A triple-functionalized paste of CaP carrying plasmid DNA encoding for BMP-7 and for VEGF), and siRNA against TNF-α was developed and denoted as CaP3mix. To compare the effects of 3mixCaP, CaP with plasmid DNA encoding BMP-7, VEGF, or siRNA encoding TNF-α was prepared and denoted as CaP/PEI/pBMP-7/SiO2, CaP/PEI/pVEGF/SiO2, or CaP/PEI/siRNA-TNF-α/SiO2, respectively. The bone healing in bone defects in the rat femoral head was investigated after 10 and 21 days of implantation. Results: The levels of bone formation-related markers OCN, Runx2, and SP7 increased at the protein and gene levels in 3mixCaP after 10 days, and 3mixCaP significantly accelerated bone healing compared with the other treatments after 21 days of implantation. Conclusion: The triple-functionalized CaP paste loading plasmid DNA encoding BMP-7 and VEGF and siRNA encoding TNF-α is a promising bioactive material for bone tissue repair.

12.
Front Endocrinol (Lausanne) ; 14: 1101758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909307

RESUMO

Calcium phosphate (CaP) is the inorganic part of hard tissues, such as bone, teeth and tendons, and has a high biocompatibility and good biodegradability. Therefore, CaP nanoparticles functionalized with DNA encoding bone anabolic factors are promising carrier-systems for future therapeutic development. Here, we analysed CaP nanoparticles in a genetically modified medaka fish model, where osteoporosis-like lesions can be induced by transgenic expression of receptor activator of nuclear factor kappa-B ligand (Rankl). Rankl-transgenic medaka were used to visualize and understand effects of microinjected functionalized CaP nanoparticles during modulation of osteoclast activity in vivo. For this, we synthetized multi-shell CaP nanoparticles by rapid precipitation of calcium lactate and ammonium hydrogen phosphate followed by the addition of plasmid DNA encoding the osteoclastogenesis inhibitory factor osteoprotegerin-b (Opgb). An additional layer of poly(ethyleneimine) was added to enhance cellular uptake. Integrity of the synthesized nanoparticles was confirmed by dynamic light scattering, scanning electron microscopy and energy dispersive X-ray spectroscopy. Fluorescently labelled CaP nanoparticles were microinjected into the heart, trunk muscle or caudal fins of Rankl-transgenic medaka embryos that expressed fluorescent reporters in various bone cell types. Confocal time-lapse imaging revealed a uniform distribution of CaP nanoparticles in injected tissues and showed that nanoparticles were efficiently taken up by macrophages that subsequently differentiated into bone-resorbing osteoclasts. After Rankl induction, fish injected with Opg-functionalized nanoparticles showed delayed or absent degradation of mineralized matrix, i.e. a lower incidence of osteoporosis-like phenotypes. This is proof of principle that CaP nanoparticles can be used as carriers to efficiently deliver modulatory compounds to osteoclasts and block their activity.


Assuntos
Oryzias , Osteoporose , Animais , Osteoprotegerina/metabolismo , Osteoclastos/metabolismo , Osteoporose/patologia , Animais Geneticamente Modificados , Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/farmacologia
13.
J Biomed Mater Res B Appl Biomater ; 109(10): 1407-1417, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33474824

RESUMO

The colloidal stability, cytotoxicity, and cellular uptake of hafnium oxide (HfO2 ) nanoparticles (NPs) were investigated in vitro to assess safety and efficacy for use as a deliverable theranostic in nanomedicine. Monoclinic HfO2 NPs, ~60-90 nm in diameter and ellipsoidal in shape, were directly prepared without calcination by a hydrothermal synthesis at 83% yield. The as-prepared, bare HfO2 NPs exhibited colloidal stability in cell culture media for at least 10 days without significant agglomeration or settling. The viability (live/dead assay) of human epithelial cells (HeLa) and monocyte-derived macrophages (THP-1) did not fall below 95% of untreated cells after up to 24 h exposure to HfO2 NPs at concentrations up to 0.80 mg/ml. Similarly, the mitochondrial activity (MTT assay) of HeLa and THP-1 cells did not fall below 80% of untreated cells after up to 24 h exposure to HfO2 NPs at concentrations up to 0.40 mg/ml. Cellular uptake was confirmed and visualized in both HeLa and THP-1 cells by fluorescence microscopy of HfO2 NPs labeled with Cy5 and transmission electron microscopy (TEM) of bare HfO2 NPs. TEM micrographs provided direct observation of macropinocytosis and endosomal compartmentalization within 4 h of exposure. Thus, the HfO2 NPs in this study exhibited colloidal stability, cytocompatibility, and cellular uptake for potential use as a deliverable theranostic in nanomedicine.


Assuntos
Háfnio/química , Nanopartículas Metálicas/química , Óxidos/química , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Imagem Óptica , Células THP-1
14.
Sci Total Environ ; 769: 144575, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33486165

RESUMO

Silica fibers with a dimension of 0.3 µm ∙ 3.2 µm2 nm were prepared by a modified Stöber synthesis as model particles. The particles were characterized by scanning electron microscopy, elemental analysis, thermogravimetry and X-ray powder diffraction. Their uptake by macrophages (THP-1 cells and NR8383 cells) was studied by confocal laser scanning microscopy and scanning electron microscopy. The uptake by cells was very high, but the silica fibers were not harmful to NR8383 cells in concentrations up to 100 µg mL-1. Only above 100 µg mL-1, significant cell toxic effects were observed, probably induced by a high dose of particles that had sedimented on the cells and led to the adverse effects. The chemotactic response as assessed by the particle-induced migration assay (PICMA) was weak in comparison to a control of agglomerated silica particles. The as-prepared fibers were fully X-ray amorphous but crystallized to ß-cristobalite after heating to 1000 °C and converted to α-cristobalite upon cooling to ambient temperature. The fibers had sintered to larger aggregates but retained their elongated primary shape. The particle cytotoxicity towards THP-1 cells was not significantly enhanced by the crystallization.


Assuntos
Macrófagos , Dióxido de Silício , Cristalização , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Dióxido de Silício/toxicidade , Difração de Raios X
15.
Int J Numer Method Biomed Eng ; 37(2): e3420, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249737

RESUMO

The most common causes of conducting a hip revision surgery after total hip replacement are aseptic loosening (aseptic instability) of the endoprosthesis, bone destruction as a result of contact with the endoprosthesis, and a periprosthetic fracture. These are the effects of load transfer to the bone tissue in arthroplasty resulting due to the difference in stiffness of the endoprosthesis and the bone. Titanium alloy is widely used in endoprostheses manufacturing because of its high biocompatibility, good wear properties, and corrosion resistance, but such endoprostheses are stiffer than the femur. These problems have raised interest in searching for the best materials and topology for a femoral implant. Nowadays additive technology is of great interest as it enables to create materials with graded density. These materials consist of multiple lattice structures with variable parameters and topology. By varying the parameters of lattice structures one can adjust the mechanical properties of the material as required. These materials find their application in hip endoprostheses manufacturing, allowing to adjust the parameters of the lattice structures, and deliver a product with femur-like mechanical properties. The porous structure also ensures bone tissue ingrowth into the prosthesis. The authors designed and simulated an endoprosthesis made of graded density lattice structures with femur-like mechanical properties. Using a numerical simulation software Ansys Mechanical authors determined the effect of the topology on the structural behavior of the femur and defined the endoprosthesis-femur combined performance under various load cases.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Fêmur/cirurgia , Porosidade , Desenho de Prótese
16.
Acta Biomater ; 119: 375-389, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166711

RESUMO

Protamine-coated multi-shell calcium phosphate (CaP) was developed as a non-viral vector for tissue regeneration therapy. CaP nanoparticles loaded with different amounts of plasmid DNA encoding bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) were used to treat MC3T3E1 cells, and the yield of the released BMP-2 or IGF-1 was measured using ELISA 3 days later. Collagen scaffolds containing CaP nanoparticles were implanted into rat cranial bone defects, and BMP-2 and IGF-1 yields, bone formation, and bone mineral density enhancement were evaluated 28 days after gene transfer. The antibacterial effects of CaP nanoparticles against Streptococcus mutans and Aggregatibacter actinomycetemcomitans increased with an increase in the protamine dose, while they were lower for Staphylococcus aureus and Porphyromonas gingivalis. In the combination treatment with BMP-2 and IGF-1, the concentration ratio of BMP-2 and IGF-1 is an important factor affecting bone formation activity. The calcification activity and OCN mRNA of MC3T3E1 cells subjected to a BMP-2:IGF-1 concentration ratio of 1:4 was higher at 14 days. During gene transfection treatment, BMP-2 and IGF-1 were released simultaneously after gene transfer; the loaded dose of the plasmid DNA encoding IGF-1 did not impact the BMP-2 or IGF-1 yield or new bone formation ratio in vitro and in vivo. In conclusion, two growth factor-releasing systems were developed using an antibacterial gene transfer vector, and the relationship between the loaded plasmid DNA dose and resultant growth factor yield was determined in vitro and in vivo.


Assuntos
Antibacterianos , Fosfatos de Cálcio , Nanopartículas , Osteogênese , Regeneração , Células 3T3 , Animais , Antibacterianos/farmacologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Fosfatos de Cálcio/farmacologia , Fator de Crescimento Insulin-Like I , Camundongos , Ratos , Transfecção
17.
Materials (Basel) ; 14(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202610

RESUMO

A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank's solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles' behavior in animal tumor models in vivo as promising carriers of anticancer agents.

18.
Acta Biomater ; 133: 297-307, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540061

RESUMO

Hepatitis B virus (HBV) is a global health issue, but currently available anti-HBV drugs have limited success. Previously, introduction of the Toll-like receptor (TLR)-3 ligand poly(I:C) to the liver via hydrodynamic injection (HI) was shown to effectively suppress HBV replication in a chronic HBV replication mouse model. However, this method cannot be applied in human beings. To improve the liver targeting of poly(I:C) via intravenous injection, calcium phosphate nanoparticles (CPNs) carrying poly(I:C) with or without antibodies were constructed, and their anti-HBV effects were investigated. We found that significantly more anti-F4/80-conjugated and IgG2α-conjugated nanoparticles were taken up in liver cells both in vivo and in vitro. In addition, these nanoparticles produced pronounced immunostimulatory effects in vitro in primary liver cells. Importantly, treatment with nanoparticles carrying poly(I:C) increased the production of intrahepatic cytokines and chemokines and enhanced T cell responses, significantly reducing HBsAg, HBeAg and HBV DNA levels in the mice. Compared to nonconjugated and isotype-antibody-conjugated nanoparticles, the anti-F4/80-conjugated nanoparticles demonstrated the strongest anti-HBV effects. In summary, nanoparticles carrying poly(I:C) conjugated with an F4/80 antibody promoted liver targeting, and they may represent a suitable alternative to HI for future anti-HBV treatment. STATEMENT OF SIGNIFICANCE: HBV chronically infects approximately 250 million individuals worldwide but current anti-HBV drugs have limited success. Introduction of toll-like receptor 3 ligand poly(I:C) into liver by hydrodynamic injection has been proven to promote HBV clearance in mouse model. However, this technique is not clinically suitable for human patients. We have constructed calcium phosphate nanoparticles carrying poly(I:C) with specific antibody targeting liver nonparenchymal cells. The uptake into relevant liver cells and the anti-HBV effects were studied. After intravenous injection into mice, the uptake rate of anti-F4/80-conjugated nanoparticels was enhanced in liver, and these nanoparticles exert effective anti-HBV effects in vivo. This may provide important insight into future HBV immunotherapy based on nanoparticle-mediated drug delivery.


Assuntos
Vírus da Hepatite B , Hepatite B/tratamento farmacológico , Nanopartículas , Animais , Anticorpos , Fosfatos de Cálcio , Sistemas de Liberação de Medicamentos , Vírus da Hepatite B/efeitos dos fármacos , Ligantes , Fígado , Camundongos , Poli I-C , Receptor 3 Toll-Like
19.
Vaccines (Basel) ; 8(1)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121590

RESUMO

The ability of vaccines to induce T cell responses is crucial for preventing diseases caused by viruses. Nanoparticles (NPs) are considered to be efficient tools for the initiation of potent immune responses. Calcium phosphate (CaP) NPs are a class of biodegradable nanocarriers that are able to deliver immune activating molecules across physiological barriers. Therefore, the aim of this study was to assess whether Toll-like receptor (TLR) ligand and viral antigen functionalized CaP NPs are capable of inducing efficient maturation of human antigen presenting cells (APC). To achieve this, we generated primary human dendritic cells (DCs) and stimulated them with CpG or poly(I:C) functionalized CaP NPs. DCs were profoundly stronger when activated upon NP stimulation compared to treatment with soluble TLR ligands. This is indicated by increased levels of costimulatory molecules and the secretion of proinflammatory cytokines. Consequently, coculture of NP-stimulated APCs with CD8+ T cells resulted in a significant expansion of virus-specific T cells. In summary, our data suggest that functionalized CaP NPs are a suitable tool for activating human virus-specific CD8+ T cells and may represent an excellent vaccine delivery system.

20.
Acta Biomater ; 110: 254-265, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344172

RESUMO

Calcium phosphate nanoparticles were loaded with plasmid DNA and toll-like receptor ligands (TLR), i.e. CpG or flagellin, to activate antigen-presenting cells (APCs) like dendritic cells (DCs). The functionalized nanoparticles were studied in vitro on HeLa, C2C12 and BHK-21 cell lines, focusing on the expression of two specific proteins. EGFP-DNA, encoding for enhanced green fluorescent protein (EGFP), was used as a model plasmid to optimize the transfection efficiency in vitro by fluorescence microscopy and flow cytometry. Calcium phosphate nanoparticles loaded with TLR ligands and plasmid DNA encoding for the hepatitis B virus surface antigen (pHBsAg) were evaluated by in vitro and in vivo immunization experiments to identify a possible candidate for a prophylactic hepatitis B virus (HBV) vaccine. The nanoparticles induced a strong expression of HBsAg in the three cell lines. In splenocytes, the expression of the co-stimulatory molecules CD80 and CD86 was enhanced. After intramuscular injection in mice, the nanoparticles induced the expression of HBsAg, the antigen-specific T cell response, and the antigen-specific antibody response (IgG1). STATEMENT OF SIGNIFICANCE: Hepatitis B is one of the most frequent viral infections worldwide. For preventive immunization, nanoparticles can be used which carry both an adjuvant (a stimulatory molecule) and DNA encoding for a viral antigen. After administration of such nanoparticles to cells, they are taken up by cells where the DNA is transcribed into the viral antigen (a protein). This viral antigen is inducing a virus-specific immune response. This was shown both by in vitro cell culture as well as by an extensive in vivo study in mice.


Assuntos
Vírus da Hepatite B , Nanopartículas , Animais , Fosfatos de Cálcio , Antígenos de Superfície da Hepatite B , Imunização , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA