RESUMO
Exosomes, nano-sized extracellular vesicles (EVs) secreted from cells, carry various cargo molecules reflecting their cells of origin. As EV content, structure, and size are highly heterogeneous, their classification via cargo molecules by determining their origin is challenging. Here, a method is presented combining surface-enhanced Raman spectroscopy (SERS) with machine learning algorithms to employ the classification of EVs derived from five different cell lines to reveal their cellular origins. Using an artificial neural network algorithm, it is shown that the label-free Raman spectroscopy method's prediction ratio correlates with the ratio of HT-1080 exosomes in the mixture. This machine learning-assisted SERS method enables a new direction through label-free investigation of EV preparations by differentiating cancer cell-derived exosomes from those of healthy. This approach will potentially open up new avenues of research for early detection and monitoring of various diseases, including cancer.
Assuntos
Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Exossomos/metabolismo , Análise Espectral Raman/métodos , Vesículas Extracelulares/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Linhagem CelularRESUMO
Glioblastoma is the most malignant primary brain tumor, and a cornerstone in its treatment is radiotherapy. However, tumor cells surviving after irradiation indicates treatment failure; therefore, better understanding of the mechanisms regulating radiotherapy response is of utmost importance. In this study, we generated clinically relevant irradiation-exposed models by applying fractionated radiotherapy over a long time and selecting irradiation-survivor (IR-Surv) glioblastoma cells. We examined the transcriptomic alterations, cell cycle and growth rate changes and responses to secondary radiotherapy and DNA damage response (DDR) modulators. Accordingly, IR-Surv cells exhibited slower growth and partly retained their ability to resist secondary irradiation. Concomitantly, IR-Surv cells upregulated the expression of DDR-related genes, such as CHK1, ATM, ATR, and MGMT, and had better DNA repair capacity. IR-Surv cells displayed downregulation of hypoxic signature and lower induction of hypoxia target genes, compared to naïve glioblastoma cells. Moreover, Chk1 inhibition alone or in combination with irradiation significantly reduced cell viability in both naïve and IR-Surv cells. However, IR-Surv cells' response to Chk1 inhibition markedly decreased under hypoxic conditions. Taken together, we demonstrate the utility of combining DDR inhibitors and irradiation as a successful approach for both naïve and IR-Surv glioblastoma cells as long as cells are refrained from hypoxic conditions.
Assuntos
Glioblastoma , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Dano ao DNA , Glioblastoma/genética , Humanos , Hipóxia , Tolerância a Radiação/genética , SobreviventesRESUMO
This study aimed to investigate and compare cell growth manners and functional differences of primary cortical neurons cultured on either poly-d-lysine (PDL) and or Matrigel, to delineate the role of extracellular matrix on providing resemblance to in vivo cellular interactions in nervous tissue. Primary cortical neurons, obtained from embryonic day 15 mice pups, seeded either on PDL- or Matrigel-coated culture ware were investigated by DIC/bright field and fluorescence/confocal microscopy for their morphology, 2D and 3D structure, and distribution patterns. Patch clamp, western blot, and RT-PCR studies were performed to investigate neuronal firing thresholds and sodium channel subtypes Nav1.2 and Nav1.6 expression. Cortical neurons cultured on PDL coating possessed a 2D structure composed of a few numbers of branched and tortuous neurites that contacted with each other in one to one manner, however, neurons on Matrigel coating showed a more complicated dimensional network that depicted tight, linear axonal bundles forming a 3D interacted neuron-astrocyte construction. This difference in growth patterns also showed a significant alteration in neuronal firing threshold which was recorded between 80 < Iinj > 120 pA on PDL and 2 < Iinj > 160 pA on Matrigel. Neurons grown up on Matrigel showed increased levels of sodium channel protein expression of Nav1.2 and Nav1.6 compared to neurons on PDL. These results have demonstrated that a 3D interacted neuron-astrocyte construction on Matrigel enhances the development of Nav1.2 and Nav1.6 in vitro and decreases neuronal firing threshold by 40 times compared to conventional PDL, resembling in vivo neuronal networks and hence would be a better in vitro model of adult neurons.
Assuntos
Astrócitos/fisiologia , Astrócitos/ultraestrutura , Colágeno , Laminina , Neurônios/fisiologia , Neurônios/ultraestrutura , Proteoglicanas , Canais de Sódio Disparados por Voltagem/biossíntese , Animais , Córtex Cerebral/citologia , Combinação de Medicamentos , Fenômenos Eletrofisiológicos , Embrião de Mamíferos/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Canal de Sódio Disparado por Voltagem NAV1.2/biossíntese , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.6/biossíntese , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neuritos/fisiologia , Técnicas de Patch-Clamp , Gravidez , Cultura Primária de CélulasRESUMO
BACKGROUND: We aimed to assess the feasibility and short-term clinical outcomes of surgical procedures for cancer at an institution using a coronavirus disease 2019 (COVID-19)-free surgical pathway during the peak phase of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. MATERIALS AND METHODS: This was a single-center study, including cancer patients from all surgical departments, who underwent elective surgical procedures during the first peak phase between March 10 and June 30, 2020. The primary outcomes were the rate of postoperative SARS-CoV-2 infection and 30-day pulmonary or non-pulmonary related morbidity and mortality associated with SARS-CoV-2 disease. RESULTS: Four hundred and four cancer patients fulfilling inclusion criteria were analyzed. The rate of patients who underwent open and minimally invasive procedures was 61.9% and 38.1%, respectively. Only one (0.2%) patient died during the study period due to postoperative SARS-CoV2 infection because of acute respiratory distress syndrome. The overall non-SARS-CoV2 related 30-day morbidity and mortality rates were 19.3% and 1.7%, respectively; whereas the overall SARS-CoV2 related 30-day morbidity and mortality rates were 0.2% and 0.2%, respectively. CONCLUSIONS: Under strict institutional policies and measures to establish a COVID-19-free surgical pathway, elective and emergency cancer operations can be performed with acceptable perioperative and postoperative morbidity and mortality.
Assuntos
COVID-19/epidemiologia , Procedimentos Cirúrgicos Eletivos/estatística & dados numéricos , Neoplasias/cirurgia , Complicações Pós-Operatórias/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Procedimentos Cirúrgicos Eletivos/métodos , Procedimentos Cirúrgicos Eletivos/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/mortalidade , Pandemias , Complicações Pós-Operatórias/virologia , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação , Turquia/epidemiologia , Adulto JovemRESUMO
Glucagon-like peptide 1 (GLP-1) is a target for treatment of diabetes; however, its function in the brain is not well studied. In this systematic review, we aimed to analyze the neuroprotective role of GLP-1 and its defined mechanisms. Methods: We searched 'Web of Science' and 'Pubmed' to identify relevant studies using GLP-1 as the keyword. Two hundred and eighty-nine clinical and preclinical studies have been included. Data have been presented by grouping neurodegenerative, neurovascular and specific cell culture models. Results: Recent literature shows that GLP-1 and its agonists, DPP-4 inhibitors and combined GLP-1/GIP molecules are effective in partially or fully reversing the effects of neurotoxic compounds, neurovascular complications of diabetes, neuropathological changes related with Alzheimer's disease, Parkinson's disease or vascular occlusion. Possible mechanisms that provide neuroprotection are enhancing the viability of the neurons and restoring neurite outgrowth by increased neurotrophic factors, increasing subventricular zone progenitor cells, decreasing apoptosis, decreasing the level of pro-inflammatory factors, and strengthening blood-brain barrier. Conclusion: Based on the preclinical studies, GLP-1 modifying agents are promising targets for neuroprotection. On the other hand, the number of clinical studies that investigate GLP-1 as a treatment is low and further clinical trials are needed for a benchside to bedside translation of recent findings.
Assuntos
Peptídeo 1 Semelhante ao Glucagon/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Ensaios Clínicos como Assunto , Humanos , Doenças Neurodegenerativas/terapia , Neuroproteção/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacosRESUMO
Introduction - Although the involvement of the hypoglossal nerve together with other cranial nerves is common in several pathological conditions of the brain, particularly the brainstem, isolated hypoglossal nerve palsy is a rare condition and a diagnostic challenge. Case presentation - The presented patient arrived to the hospital with a history of slurred speech and an uncomfortable sensation on his tongue. Neurological examination showed left-sided hemiatrophy of the tongue with fasciculations and deviation towards the left side during protrusion. Based on the clinical and MRI findings, a diagnosis of hypoglossal nerve schwannoma was made. Discussion - Hypoglossal nerve palsy may arise from multiple causes such as trauma, infections, neoplasms, and endocrine, autoimmune and vascular pathologies. In our case, the isolated involvement of the hypoglossal nerve was at the skull base segment, where the damage to the hypoglossal nerve may occur mostly due to metastasis, nasopharyngeal carcinomas, nerve sheath tumors and glomus tumors. Conclusion - Because of the complexity of the region's anatomy, the patient diagnosed with hypoglossal nerve schwannoma was referred for gamma knife radiosurgery.
Assuntos
Doenças do Nervo Hipoglosso/patologia , Nervo Hipoglosso/patologia , Veias Jugulares/patologia , Neurilemoma/patologia , Neoplasias dos Nervos Cranianos/diagnóstico por imagem , Humanos , Nervo Hipoglosso/cirurgia , Doenças do Nervo Hipoglosso/cirurgia , Imageamento por Ressonância Magnética , Neurilemoma/cirurgia , RadiocirurgiaRESUMO
BACKGROUND: Case series (CS) are well-known designs in contemporary use in neurosurgery but are sometimes used in contexts that are incompatible with their true meaning as defined by epidemiologists. This inconsistent, inappropriate and incorrect use, and mislabeling impairs the appropriate indexing and sorting of evidence. METHOD: Using PubMed, we systematically identified published articles that had "case series" in the "title" in 15 top-ranked neurosurgical journals from January 2008 to December 2012. The abstracts and/or full articles were scanned to identify those with descriptions of the principal method as being "case series" and then classified as "true case series" or "non-case series" by two independent investigators with 100 % inter-rater agreement. RESULTS: Sixty-four articles had the label "case series" in their "titles." Based on the definition of "case series" and our appraisal of the articles using Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines, 18 articles (28.13 %) were true case series, while 46 (71.87 %) were mislabeled. Thirty-five articles (54.69 %) mistook retrospective (descriptive) cohorts for CS. CS are descriptive with an outcome-based sampling, while "descriptive cohorts" have an exposure-based sampling of patients, followed over time to assess outcome(s). A comparison group is not a defining feature of a cohort study and distinguishes descriptive from analytic cohorts. CONCLUSION: A distinction between a case report, case series, and descriptive cohorts is absolutely necessary to enable the appropriate indexing, sorting, and application of evidence. Researchers need better training in methods and terminology, and editors and reviewers should scrutinize more carefully manuscripts claiming to be "case series" studies.
Assuntos
Doenças do Sistema Nervoso/cirurgia , Neurocirurgia/métodos , Estudos de Coortes , Humanos , PubMed/estatística & dados numéricosRESUMO
Tumor extracellular matrices (ECM) exhibit aberrant changes in composition and mechanics compared to normal tissues. Proteoglycans (PG) are vital regulators of cellular signaling in the ECM with the ability to modulate receptor tyrosine kinase (RTK) activation via their sulfated glycosaminoglycan (sGAG) side chains. However, their role on tumor cell behavior is controversial. Here, it is demonstrated that PGs are heavily expressed in lung adenocarcinoma (LUAD) patients in correlation with invasive phenotype and poor prognosis. A bioengineered human lung tumor model that recapitulates the increase of sGAGs in tumors in an organotypic matrix with independent control of stiffness, viscoelasticity, ligand density, and porosity, is developed. This model reveals that increased sulfation stimulates extensive proliferation, epithelial-mesenchymal transition (EMT), and stemness in cancer cells. The focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K) signaling axis is identified as a mediator of sulfation-induced molecular changes in cells upon activation of a distinct set of RTKs within tumor-mimetic hydrogels. The study shows that the transcriptomic landscape of tumor cells in response to increased sulfation resembles native PG-rich patient tumors by employing integrative omics and network modeling approaches.
Assuntos
Matriz Extracelular , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Matriz Extracelular/metabolismo , Invasividade Neoplásica , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteoglicanas/metabolismo , Proteoglicanas/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologiaRESUMO
â¢FL increases beta-galactosidase activity in GBM cell cultures.â¢FL cause a decrease in GBM cell numbers.â¢Sampling in GBM cell culture should be performed before using FL.
RESUMO
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
RESUMO
INTRODUCTION: Although randomized interventional studies are the gold standard of clinical study designs, they are not always feasible or necessary. In such cases, observational studies can bring insights into critical questions while minimizing harm and cost. There are numerous observational study designs, each with strengths and demerits. Unfortunately, it is not uncommon for observational study designs to be poorly designed or reported. In this article, the authors discuss similarities and differences between observational study designs, their application, and tenets of good use and proper reporting focusing on neurosurgery. METHODS: The authors illustrated neurosurgical case scenarios to describe case reports, case series, and cohort, cross-sectional, and case-control studies. The study design definitions and applications are taken from seminal research methodology readings and updated observational study reporting guidelines. RESULTS: The authors have given a succinct account of the structure, functioning, and uses of common observational study designs in Neurosurgery. Specifically, they discussed the concepts of study direction, temporal sequence, advantages, and disadvantages. Also, they highlighted the differences between case reports and case series; case series and descriptive cohort studies; and cohort and case-control studies. Also, they discussed their impacts on internal validity, external validity, and relevance. CONCLUSION: This paper disambiguates widely held misconceptions on the different observational study designs. In addition, it uses case-based scenarios to facilitate comprehension and relevance to the academic neurosurgery audience.
Assuntos
Neurocirurgia , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Humanos , Procedimentos NeurocirúrgicosRESUMO
Soluble ACE2 (sACE2) decoys are promising agents to inhibit SARS-CoV-2, as their efficiency is unlikely to be affected by escape mutations. However, their success is limited by their relatively poor potency. To address this challenge, multimeric sACE2 consisting of SunTag or MoonTag systems is developed. These systems are extremely effective in neutralizing SARS-CoV-2 in pseudoviral systems and in clinical isolates, perform better than the dimeric or trimeric sACE2, and exhibit greater than 100-fold neutralization efficiency, compared to monomeric sACE2. SunTag or MoonTag fused to a more potent sACE2 (v1) achieves a sub-nanomolar IC50 , comparable with clinical monoclonal antibodies. Pseudoviruses bearing mutations for variants of concern, including delta and omicron, are also neutralized efficiently with multimeric sACE2. Finally, therapeutic treatment of sACE2(v1)-MoonTag provides protection against SARS-CoV-2 infection in an in vivo mouse model. Therefore, highly potent multimeric sACE2 may offer a promising treatment approach against SARS-CoV-2 infections.
Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Animais , Anticorpos Monoclonais/uso terapêutico , Camundongos , SARS-CoV-2RESUMO
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces tumor cell-specific apoptosis, making it a prime therapeutic candidate. However, many tumor cells are either innately TRAIL-resistant, or they acquire resistance with adaptive mechanisms that remain poorly understood. In this study, we generated acquired TRAIL resistance models using multiple glioblastoma (GBM) cell lines to assess the molecular alterations in the TRAIL-resistant state. We selected TRAIL-resistant cells through chronic and long-term TRAIL exposure and noted that they showed persistent resistance both in vitro and in vivo. Among known TRAIL-sensitizers, proteosome inhibitor Bortezomib, but not HDAC inhibitor MS-275, was effective in overcoming resistance in all cell models. This was partly achieved through upregulating death receptors and pro-apoptotic proteins, and downregulating major anti-apoptotic members, Bcl-2 and Bcl-xL. We showed that CRISPR/Cas9 mediated silencing of DR5 could block Bortezomib-mediated re-sensitization, demonstrating its critical role. While overexpression of Bcl-2 or Bcl-xL was sufficient to confer resistance to TRAIL-sensitive cells, it failed to override Bortezomib-mediated re-sensitization. With RNA sequencing in multiple paired TRAIL-sensitive and TRAIL-resistant cells, we identified major alterations in inflammatory signaling, particularly in the NF-κB pathway. Inhibiting NF-κB substantially sensitized the most resistant cells to TRAIL, however, the sensitization effect was not as great as what was observed with Bortezomib. Together, our findings provide new models of acquired TRAIL resistance, which will provide essential tools to gain further insight into the heterogeneous therapy responses within GBM tumors. Additionally, these findings emphasize the critical importance of combining proteasome inhibitors and pro-apoptotic ligands to overcome acquired resistance.
Assuntos
Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Proteínas Reguladoras de Apoptose , Humanos , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores do Ligante Indutor de Apoptose Relacionado a TNFRESUMO
Glioblastoma is a malignant brain cancer with limited treatment options and high mortality rate. While established glioblastoma cell line models provide valuable information, they ultimately lose most primary characteristics of tumors under long-term serum culture conditions. Therefore, established cell lines do not necessarily recapitulate genetic and morphological characteristics of real tumors. In this study, in line with the growing interest in using primary cell line models derived from patient tissue, we generated a primary glioblastoma cell line, KUGBM8 and characterized its genetic alterations, long term growth ability, tumor formation capacity and its response to Temozolomide, the front-line chemotherapy utilized clinically. In addition, we performed a drug repurposing screen on the KUGBM8 cell line to identify FDA-approved agents that can be incorporated into glioblastoma treatment regimen and identified Topotecan as a lead drug among 1,200 drugs. We showed Topotecan can induce cell death in KUGBM8 and other primary cell lines and cooperate with Temozolomide in low dosage combinations. Together, our study provides a new primary cell line model that can be suitable for both in vitro and in vivo studies and suggests that Topotecan can offer promise as a therapeutic approach for glioblastoma.
RESUMO
OBJECTIVES: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively triggers apoptosis in cancer cells, but not in normal cells. Resistance of glioblastoma cells to TRAIL is a major obstacle for successful clinical treatment of TRAIL. Thus, there is an essential requirement for novel approaches to sensitize TRAIL resistance. Silver nanoparticles (AgNPs) are one of the most promising nanomaterials that show immense antitumor potential via targeting various cellular and molecular processes; however, the effects of AgNPs on TRAIL sensitivity in cancer cells remain unclear. Therefore, we hypothesized that TRAIL-conjugated AgNPs (TRAIL-AgNPs) can overcome TRAIL resistance through inducing death receptor activation in glioblastoma cells, but not normal cells. METHODS: In this study, the therapeutic effect of TRAIL-AgNPs is investigated by analyzing the cell viability, caspase activity, and CHK1 gene expression in T98 G TRAIL-Sensitive (TS) and T98 G TRAIL-Resistant (TR) glioblastoma cells. RESULTS: It is found that TRAIL-AgNPs are more toxic compared to TRAIL and AgNPs treatments alone on TR cells. While TRAIL and AgNPs alone do not enhance the caspase activity, conjugation of TRAIL to AgNPs increases the caspase activity in TR cells. Moreover, the TRAIL-AgNPs-treated TR cells show less CHK1 expression compared to the TRAIL treatment. CONCLUSION: These results suggest that TRAIL sensitivity of TR cells can be enhanced by conjugation of TRAIL with AgNPs, which would be a novel therapeutic approach to sensitize TRAIL resistance.
Assuntos
Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/metabolismo , Prata/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Humanos , Prata/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologiaRESUMO
OBJECTIVES: The molecular mechanisms of the anti-apoptotic and anti-inflammatory properties of granulocyte-colony stimulating factor (G-CSF) following focal cerebral ischemia in rats were examined in this study. METHODS: Sprague-Dawley rats were randomly divided into three groups: sham, middle cerebral artery occlusion (MCAO) non-treatment and MCAO with G-CSF treatment. Focal ischemia was induced with the suture occlusion method for 90 minutes, and treatment was given at the onset of reperfusion. All animals were killed 24 hours after reperfusion. Assessment included neurological scores, infarction volumes, histology, immunofluorescent staining and Western blotting. RESULTS: G-CSF significantly reduced the infarct volume and ameliorated the early neurological outcome scores. Western blot analysis showed that G-CSF treatment significantly elevated the cIAP2 levels and decreased the activation of caspase 3 in the ischemic cortex compared with the non-treated rats. Immunofluorescent works also showed that G-CSF treatment inhibited both neuronal and glial tumor necrosis factor alpha and interleukin 1beta expressions. DISCUSSION: The neuronal anti-apoptotic action of G-CSF may be mediated in part by the anti-apoptotic protein cIAP2. G-CSF also exerts anti-inflammatory actions after focal cerebral ischemia by preventing both neuronal and glial pro-inflammatory cytokine expressions.
Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Infarto da Artéria Cerebral Média , Inflamação/tratamento farmacológico , Análise de Variância , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Caspase 3/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/prevenção & controle , Inflamação/etiologia , Proteínas Inibidoras de Apoptose/metabolismo , Interleucina-1beta/metabolismo , Masculino , Exame Neurológico , Fosfopiruvato Hidratase/metabolismo , Ratos , Ratos Sprague-Dawley , Reperfusão , Fator de Necrose Tumoral alfa/metabolismoRESUMO
OBJECTIVE: The aim of this study was to investigate the ability of topiramate (TPM) to prevent neural injury in a rabbit model of subarachnoid hemorrhage (SAH). The effect of TPM on cerebral vasospasm was also evaluated. METHODS: Fifty-three New Zealand white rabbits were allocated into three groups randomly. SAH was induced by injecting autologous blood into the cisterna magna. The treatment groups were as follows: (1) sham operated (no SAH (n=18); (2) SAH only (n=17); (3) SAH + TPM (n=18). Hippocampal sections were evaluated for neural tissue degeneration, using the previously described neural degeneration scoring system. The ApopTag peroxidase in situ apoptosis detection kit (Serologicals Corp., former Intergen) was used to assess apoptosis in the hippocampal sections and the effect of TPM on the apoptotic response. Basilar artery lumen areas and arterial wall thickness were also measured in all groups. RESULTS: There was a statistically significant difference between the mean degeneration scores of the control and SAH only groups (p<0.05). The level of neural degeneration in TPM treated group was significantly lower compared with SAH only group (p<0.05), but not significantly higher than the control group (p>0.05). There were no statistically significant differences between arterial cross-sectional area and arterial wall thickness measurements of the SAH group and SAH + TPM group. CONCLUSION: These findings demonstrate that TPM has marked neuroprotective effect in an experimental model of SAH in rabbits. This observation may have clinical implications suggesting that this antiepileptic drug could be used as a possible neuroprotective agent in patients without major adverse effects.
Assuntos
Frutose/análogos & derivados , Hipocampo/lesões , Hipocampo/patologia , Fármacos Neuroprotetores/farmacologia , Hemorragia Subaracnóidea/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Artéria Basilar/patologia , Modelos Animais de Doenças , Frutose/farmacologia , Imuno-Histoquímica , Masculino , Coelhos , Hemorragia Subaracnóidea/patologia , TopiramatoRESUMO
Lesion growth following acutely injured brain tissue after stroke, subarachnoid hemorrhage and traumatic brain injury is an important issue and a new target area for promising therapeutic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated as one of the significant contributors of continued lesion growth. In this short review, we discuss the pathophysiology for SD forming events and try to list findings detected in neurological disorders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as well as experimental studies. Pharmacological and non-pharmacological treatment strategies are highlighted and future directions and research limitations are discussed.
Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Doenças do Sistema Nervoso/complicações , Doenças do Sistema Nervoso/fisiopatologia , Animais , Lesões Encefálicas Traumáticas/complicações , Isquemia Encefálica/complicações , Humanos , Transtornos de Enxaqueca/complicações , Acidente Vascular Cerebral/complicações , Hemorragia Subaracnóidea/complicaçõesAssuntos
Resistencia a Medicamentos Antineoplásicos , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/genética , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismoRESUMO
Diffuse idiopathic skeletal hyperostosis (DISH) or Forestier's disease is a common disorder of unknown etiology that is characterized by ossification of the anterior longitudinal ligament of the spine and various extra-spinal ligaments. We present the case of a 54-year-old woman with progressive dysphagia due to DISH of the cervical spine, which is a relatively rare pathology in neurosurgical practice. The cervical osteophytes extending from C2 to C4 and external compression of the pharyngoesophageal segment by the large osteophytes were demonstrated by X-ray, magnetic resonance imaging, and computed tomography. Surgical removal of the large osteophytes and a shortterm nonsteroidal anti-inflammatory drug regimen led to the resolution of dysphagia. The clinical manifestations, diagnosis, and treatment of this unusual condition are discussed.