Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 165(4): 882-95, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133169

RESUMO

High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.


Assuntos
Encéfalo/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Obesidade/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Cognição , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Camundongos , Células Mieloides/metabolismo
3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339177

RESUMO

One of the most biologically relevant functions of astrocytes within the CNS is the regulation of synaptic transmission, i.e., the physiological basis for information transmission between neurons. Changes in the strength of synaptic connections are indeed thought to be the cellular basis of learning and memory. Importantly, astrocytes have been demonstrated to tightly regulate these processes via the release of several gliotransmitters linked to astrocytic calcium activity as well as astrocyte-neuron metabolic coupling. Therefore, astrocytes seem to be integrators of and actors upon learning- and memory-relevant information. In this review, we focus on the role of astrocytes in learning and memory processes. We delineate the recognized inputs and outputs of astrocytes and explore the influence of manipulating astrocytes on behaviour across diverse learning paradigms. We conclude that astrocytes influence learning and memory in various manners. Appropriate astrocytic Ca2+ dynamics are being increasingly identified as central contributors to memory formation and retrieval. In addition, astrocytes regulate brain rhythms essential for cognition, and astrocyte-neuron metabolic cooperation is required for memory consolidation.


Assuntos
Astrócitos , Aprendizagem , Astrócitos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios/metabolismo , Memória/fisiologia
4.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255872

RESUMO

Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disorder characterized by cognitive decline, memory loss, behavioral changes, and other neurological symptoms. Considering the urgent need for new AD therapeutics, in the present study we designed, synthesized, and evaluated multitarget compounds structurally inspired by sulfonylureas and pitolisant with the aim of obtaining multitarget ligands for AD treatment. Due to the diversity of chemical scaffolds, a novel strategy has been adopted by merging into one structure moieties displaying H3R antagonism and acetylcholinesterase inhibition. Eight compounds, selected by their binding activity on H3R, showed a moderate ability to inhibit acetylcholinesterase activity in vitro, and two of the compounds (derivatives 2 and 7) were also capable of increasing acetylcholine release in vitro. Among the tested compounds, derivative 2 was identified and selected for further in vivo studies. Compound 2 was able to reverse scopolamine-induced cognitive deficits with results comparable to those of galantamine, a drug used in clinics for treating AD. In addition to its efficacy, this compound showed moderate BBB permeation in vitro. Altogether, these results point out that the fragment-like character of compound 2 leads to an optimal starting point for a plausible medicinal chemistry approach for this novel strategy.


Assuntos
Doença de Alzheimer , Piperidinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Galantamina , Acetilcolina
5.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901787

RESUMO

Alzheimer's disease (AD) is the main type of dementia and is a disease with a profound socioeconomic burden due to the lack of effective treatment. In addition to genetics and environmental factors, AD is highly associated with metabolic syndrome, defined as the combination of hypertension, hyperlipidemia, obesity and type 2 diabetes mellitus (T2DM). Among these risk factors, the connection between AD and T2DM has been deeply studied. It has been suggested that the mechanism linking both conditions is insulin resistance. Insulin is an important hormone that regulates not only peripheral energy homeostasis but also brain functions, such as cognition. Insulin desensitization, therefore, could impact normal brain function increasing the risk of developing neurodegenerative disorders in later life. Paradoxically, it has been demonstrated that decreased neuronal insulin signalling can also have a protective role in aging and protein-aggregation-associated diseases, as is the case in AD. This controversy is fed by studies focused on neuronal insulin signalling. However, the role of insulin action on other brain cell types, such as astrocytes, is still unexplored. Therefore, it is worthwhile exploring the involvement of the astrocytic insulin receptor in cognition, as well as in the onset and/or development of AD.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Doença de Alzheimer/metabolismo , Síndrome Metabólica/metabolismo , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Encéfalo/metabolismo , Insulina Regular Humana , Fatores de Risco
6.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139384

RESUMO

In this study, the plausible role of trimethylamine N-oxide (TMAO), a microbiota metabolite, was investigated as a link between peripheral inflammation and the inflammation of the central nervous system using different cell lines. TMAO treatment favored the differentiation of adipocytes from preadipocytes (3T3-L1 cell line). In macrophages (RAW 264.7 cell line), which infiltrate adipose tissue in obesity, TMAO increased the expression of pro-inflammatory cytokines. The treatment with 200 µM of TMAO seemed to disrupt the blood-brain barrier as it induced a significant decrease in the expression of occludin in hCMECs. TMAO also increased the expression of pro-inflammatory cytokines in primary neuronal cultures, induced a pro-inflammatory state in primary microglial cultures, and promoted phagocytosis. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between peripheral and central inflammation. Thus, TMAO-decreasing compounds may be a promising therapeutic strategy for neurodegenerative diseases.


Assuntos
Inflamação , Metilaminas , Humanos , Inflamação/metabolismo , Metilaminas/farmacologia , Metilaminas/metabolismo , Citocinas , Projetos de Pesquisa
7.
Cell Mol Neurobiol ; 42(2): 377-387, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400081

RESUMO

Recent investigations have increased the interest on the connection between the microorganisms inhabiting the gut (gut microbiota) and human health. An imbalance of the intestinal bacteria representation (dysbiosis) could lead to different diseases, ranging from obesity and diabetes, to neurological disorders including Alzheimer's disease (AD). The term "gut-brain axis" refers to a crosstalk between the brain and the gut involving multiple overlapping pathways, including the autonomic, neuroendocrine, and immune systems as well as bacterial metabolites and neuromodulatory molecules. Through this pathway, microbiota can influence the onset and progression of neuropathologies such as AD. This review discusses the possible interaction between the gut microbiome and AD, focusing on the role of gut microbiota in neuroinflammation, cerebrovascular degeneration and Aß clearance.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doença de Alzheimer/patologia , Bactérias/metabolismo , Encéfalo/metabolismo , Disbiose , Humanos
8.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409145

RESUMO

The brain is one of the most energy-consuming organs in the body. Satisfying such energy demand requires compartmentalized, cell-specific metabolic processes, known to be complementary and intimately coupled. Thus, the brain relies on thoroughly orchestrated energy-obtaining agents, processes and molecular features, such as the neurovascular unit, the astrocyte-neuron metabolic coupling, and the cellular distribution of energy substrate transporters. Importantly, early features of the aging process are determined by the progressive perturbation of certain processes responsible for adequate brain energy supply, resulting in brain hypometabolism. These age-related brain energy alterations are further worsened during the prodromal stages of neurodegenerative diseases, namely Alzheimer's disease (AD), preceding the onset of clinical symptoms, and are anatomically and functionally associated with the loss of cognitive abilities. Here, we focus on concrete neuroenergetic features such as the brain's fueling by glucose and lactate, the transporters and vascular system guaranteeing its supply, and the metabolic interactions between astrocytes and neurons, and on its neurodegenerative-related disruption. We sought to review the principles underlying the metabolic dimension of healthy and AD brains, and suggest that the integration of these concepts in the preventive, diagnostic and treatment strategies for AD is key to improving the precision of these interventions.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo
9.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362376

RESUMO

Obesity and aging are becoming increasingly prevalent across the globe. It has been established that aging is the major risk factor for Alzheimer's disease (AD), and it is becoming increasingly evident that obesity and the associated insulin resistance are also notably relevant risk factors. The biological plausibility of the link between high adiposity, insulin resistance, and dementia is central for understanding AD etiology, and to form bases for prevention efforts to decrease the disease burden. Several studies have demonstrated a strong association between short chain fatty acid receptor FFAR3 and insulin sensitivity. Interestingly, it has been recently established that FFAR3 mRNA levels are increased in early stages of the AD pathology, indicating that FFAR3 could play a key role in AD onset and progression. Indeed, in the present study we demonstrate that the ablation of the Ffar3 gene in Tg2576 mice prevents the development of cognitive deficiencies in advanced stages of the disease. Notably, this cognitive improvement is also maintained upon a severe metabolic challenge such as the exposure to high-fat diet (HFD) feeding. Moreover, FFAR3 deletion restores the brain hypermetabolism displayed by Tg2576 mice. Collectively, these data postulate FFAR3 as a potential novel target for AD.


Assuntos
Doença de Alzheimer , Resistência à Insulina , Animais , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Cognição , Dieta Hiperlipídica , Modelos Animais de Doenças , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
10.
Biochim Biophys Acta ; 1862(4): 511-517, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26769360

RESUMO

The concept of central insulin resistance and dysfunctional insulin signalling in sporadic Alzheimer's disease (AD) is now widely accepted and diabetes is recognized as one of the main risk factors for developing AD. Moreover, some lines of evidence indicated that VGlut1 is impaired in frontal regions of AD patients and this impairment is correlated with the progression of cognitive decline in AD. The present work hypothesizes that ketosis associated to insulin resistance could interfere with the normal activity of VGlut1 and its role in the release of glutamate in the hippocampus, which might ultimately lead to cognitive deficits. High fat diet (HFD) rats showed memory impairments and both peripheral (as shown by increased fasting plasma insulin levels and HOMA index) and hippocampal (as shown by decreased activation of insulin receptor, IRS-1 and pAkt) insulin pathway alterations, accompanied by increased ketone bodies production. All these effects were counteracted by α-lipoic acid (LA) administration. VGlut1 levels were significantly decreased in the hippocampus of HFD rats, and this decrease was reversed by LA. Altogether, the present results suggest that HFD induced alterations in central insulin signalling could switch metabolism to produce ketone bodies, which in turn, in the hippocampus, might lead to a decreased expression of VGlut1, and therefore to a decreased release of glutamate and hence, to the glutamatergic deficit described in AD. The ability of LA treatment to prevent the alterations in insulin signalling in this model of HFD might represent a possible new therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Cognição/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/sangue , Transdução de Sinais/efeitos dos fármacos , Ácido Tióctico/farmacologia , Proteína Vesicular 1 de Transporte de Glutamato/biossíntese , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/patologia , Animais , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
11.
Hippocampus ; 26(10): 1303-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27258819

RESUMO

Alzheimer's disease (AD) is characterized phenotypically by memory impairment, histologically by accumulation of pTau and ß-amyloid peptide and morphologically by a loss of nerve terminals in cortical and hippocampal regions. As glutamate is the principle excitatory neurotransmitter of the central nervous system (CNS), the glutamatergic system may play an important role in AD. To date, not many studies have addressed the deleterious effects of Aß on glutamatergic terminals; therefore the aim of this study was to investigate how Aß affects glutamatergic terminals and to assess the extent to which alterations in the glutamatergic neurotransmission could impact susceptibility to the illness. The present study shows that Aß caused a loss of glutamatergic terminals, measured by VGLUT1 protein levels, in Tg2576 primary cell cultures, Tg2576 mice and AD patient brains, and also when Aß was added exogenously to hippocampal cell cultures. Interestingly, no correlation was found between cognition and decreased VGLUT1 levels. Moreover, when Aß1-42 was intracerebroventricularlly administered into VGLUT1+/- mice, altered synaptic plasticity and increased neuroinflammation was observed in the hippocampus of those animals. In conclusion, the present study not only revealed susceptibility of glutamatergic nerve terminals to Aß induced toxicity but also underlined the importance of VGLUT1 in the progression of AD, as the decrease of this protein levels could increase the susceptibility to subsequent deleterious inputs by exacerbating Aß induced neuroinflammation and synaptic plasticity disruption. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/genética
12.
Biochim Biophys Acta ; 1832(12): 2332-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24090692

RESUMO

It is becoming evident that chronic exposure to stress not only might result in insulin resistance or cognitive deficits, but may also be considered a risk factor for pathologies such as depression or Alzheimer's disease (AD). There is great interest in determining the molecular mechanisms underlying interactions between stress, aging, memory and Alzheimer's disease (AD). We have used the chronic mild stress (CMS) model to study the effects of chronic stress on the aging process and the development of central insulin resistance and AD pathology. CMS aged mice showed cognitive impairments in the novel object recognition test. In addition, CMS aged mice displayed both peripheral insulin resistance, as shown by HOMA index, and decreased hippocampal levels of pIRS and downstream intracellular signaling (pAKT, pGSK and pERK1/2). Interestingly, there was a significant increase in both C99:C83 ratio and BACE1 levels in the hippocampus of CMS aged mice. Increased expression of the AD marker pTau was also found in stressed aged mice. Increased expression of the stress-activated protein kinase JNK was found in CMS aged mice, accompanied by significant decreases in glucocorticoid receptor (GR) expression and increases in mineralocorticoid receptor (MR) expression. It is suggested that the interaction of stress with aging should be considered when studying determinants of the onset and progression of AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/etiologia , Transtornos Cognitivos/etiologia , Resistência à Insulina , Transtornos da Memória/etiologia , Estresse Psicológico/complicações , Envelhecimento/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Western Blotting , Doença Crônica , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Insulina/sangue , Transtornos da Memória/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Estresse Psicológico/patologia
13.
Alzheimers Dement ; 10(1 Suppl): S3-11, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24529522

RESUMO

During past decades, ever-increasing life expectancy, despite the development of a sedentary lifestyle and altered eating habits, has led to a dramatic parallel increase in the prevalence of age-related diseases such as type 2 diabetes mellitus (T2DM) and neurodegenerative disorders. Converging evidence from animal and human studies has indicated that insulin resistance in the central nervous system (CNS) is observed in both T2DM and neurodegenerative disorders such as Alzheimer's disease (AD), leading to the hypothesis that impaired neuronal insulin action might be a unifying pathomechanism in the development of both diseases. This assumption, however, is in striking contrast to the evolutionary conserved, protective role of impaired insulin/insulin-like growth factor 1 signaling (IIS) in aging and in protein aggregation-associated diseases, such as AD. Thus, this review summarizes our current understanding of the physiological role of insulin action in various regions of the CNS to regulate neuronal function, learning, and memory, and to control peripheral metabolism. We also discuss mechanisms and clinical outcomes of neuronal insulin resistance and address the seeming paradox of how impaired neuronal IIS can protect from the development of neurodegenerative disorders.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Insulina/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/patologia , Animais , Humanos , Transdução de Sinais/fisiologia
14.
Brain Pathol ; 34(4): e13252, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38454090

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by an early olfactory dysfunction, progressive memory loss, and behavioral deterioration. Albeit substantial progress has been made in characterizing AD-associated molecular and cellular events, there is an unmet clinical need for new therapies. In this study, olfactory tract proteotyping performed in controls and AD subjects (n = 17/group) showed a Braak stage-dependent proteostatic impairment accompanied by the progressive modulation of amyloid precursor protein and tau functional interactomes. To implement a computational repurposing of drug candidates with the capacity to reverse early AD-related olfactory omics signatures (OMSs), we generated a consensual OMSs database compiling differential omics datasets obtained by mass-spectrometry or RNA-sequencing derived from initial AD across the olfactory axis. Using the Connectivity Map-based drug repurposing approach, PKC, EGFR, Aurora kinase, Glycogen synthase kinase, and CDK inhibitors were the top pharmacologic classes capable to restore multiple OMSs, whereas compounds with targeted activity to inhibit PI3K, Insulin-like growth factor 1 (IGF-1), microtubules, and Polo-like kinase (PLK) represented a family of drugs with detrimental potential to induce olfactory AD-associated gene expression changes. To validate the potential therapeutic effects of the proposed drugs, in vitro assays were performed. These validation experiments revealed that pretreatment of human neuron-like SH-SY5Y cells with the EGFR inhibitor AG-1478 showed a neuroprotective effect against hydrogen peroxide-induced damage while the pretreatment with the Aurora kinase inhibitor Reversine reduced amyloid-beta (Aß)-induced neurotoxicity. Taken together, our data pointed out that OMSs may be useful as substrates for drug repurposing to propose novel neuroprotective treatments against AD.


Assuntos
Doença de Alzheimer , Reposicionamento de Medicamentos , Proteoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Reposicionamento de Medicamentos/métodos , Proteoma/metabolismo , Proteoma/efeitos dos fármacos , Masculino , Idoso , Feminino , Idoso de 80 Anos ou mais , Proteômica
15.
ACS Chem Neurosci ; 14(11): 2074-2088, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236204

RESUMO

c-Jun N-terminal kinases (JNKs) are a family of protein kinases activated by a myriad of stimuli consequently modulating a vast range of biological processes. In human postmortem brain samples affected with Alzheimer's disease (AD), JNK overactivation has been described; however, its role in AD onset and progression is still under debate. One of the earliest affected areas in the pathology is the entorhinal cortex (EC). Noteworthy, the deterioration of the projection from EC to hippocampus (Hp) point toward the idea that the connection between EC and Hp is lost in AD. Thus, the main objective of the present work is to address if JNK3 overexpression in the EC could impact on the hippocampus, inducing cognitive deficits. Data obtained in the present work suggest that JNK3 overexpression in the EC influences the Hp leading to cognitive impairment. Moreover, proinflammatory cytokine expression and Tau immunoreactivity were increased both in the EC and in the Hp. Therefore, activation of inflammatory signaling and induction of Tau aberrant misfolding caused by JNK3 could be responsible for the observed cognitive impairment. Altogether, JNK3 overexpression in the EC may impact on the Hp inducing cognitive dysfunction and underlie the alterations observed in AD.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Hipocampo/metabolismo , Doença de Alzheimer/metabolismo , Transtornos Cognitivos/metabolismo , Disfunção Cognitiva/metabolismo , Cognição , Proteínas tau/metabolismo
16.
ACS Chem Neurosci ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976903

RESUMO

c-Jun N-terminal kinase 3 (JNK3) is suggested to play a key role in neurodegenerative disorders, especially in Alzheimer's disease (AD). However, it remains unclear whether JNK or amyloid ß (Aß) appears first in the disease onset. Postmortem brain tissues from four dementia subtypes of patients (frontotemporal dementia, Lewy body dementia, vascular dementia, and AD) were used to measure activated JNK (pJNK) and Aß levels. pJNK expression is significantly increased in AD; however, similar pJNK expression was found in other dementias. Furthermore, there was a significant correlation, co-localization, and direct interaction between pJNK expression and Aß levels in AD. Significant increased levels of pJNK were also found in Tg2576 mice, a model of AD. In this line, Aß42 intracerebroventricular injection in wild-type mice was able to induce a significant elevation of pJNK levels. JNK3 overexpression, achieved by intrahippocampal injection of an adeno-associated viral vector expressing this protein, was enough to induce cognitive deficiencies and precipitate Tau aberrant misfolding in Tg2576 mice without accelerating amyloid pathology. JNK3 overexpression may therefore be triggered by increased Aß. The latter, together with subsequent involvement of Tau pathology, may be underlying cognitive alterations in early stages of AD.

17.
J Neuroimmune Pharmacol ; 18(3): 529-550, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37698780

RESUMO

Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1ß, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Sirtuína 2 , Animais , Humanos , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/patologia , Camundongos Transgênicos , Sirtuína 2/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia
18.
Mech Ageing Dev ; 204: 111668, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341897

RESUMO

It has been established that ageing is the major risk factor for cognitive deficiency and it is becoming increasingly evident that insulin resistance is another factor. Biological plausibility for a link between insulin resistance and dementia is relevant for understanding disease etiology, and to form bases for prevention efforts to decrease disease burden. In the present study, peripheral and central insulin resistance was found in SAMP8 mice (aging mouse model) accompanied by cognitive deficiencies. Furthermore, a marked peripheral inflammatory state was observed in SAMP8 mice, followed by neuroinflammation that could be due to a higher cytokine leaking into the brain across an aging-disrupted blood brain barrier. Moreover, aging-induced gut dysbiosis produces higher TMAO that could also contribute to the peripheral and central inflammatory tone as well as to the cognitive deficiencies observed in SAMP8 mice. All those alterations were reversed by DMB, a treatment that decreases TMAO levels. Data obtained from this project suggest that microbial dysbiosis and increased TMAO secretion could be a key link between aging, insulin resistance and dementia. Thus, pharmacological intervention that leads to decreased TMAO levels, such as DMB, could open a new avenue for the future treatment of neurodegenerative diseases.


Assuntos
Demência , Microbioma Gastrointestinal , Resistência à Insulina , Animais , Cognição , Modelos Animais de Doenças , Disbiose , Metilaminas , Camundongos
19.
Hippocampus ; 21(9): 999-1009, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20865740

RESUMO

Recent evidence suggests that activity-regulated cytoskeleton associated protein (Arc) and brain-derived neurotrophic factor (BDNF) are key players in the cellular mechanisms that trigger synaptic changes and memory consolidation. Cholinergic deafferentiation of hippocampus has been largely shown to induce memory impairments in different behavioral tasks. However, the mechanisms underlying cholinergic-induced memory formation remain unclear. The role of hippocampal cholinergic denervation on synaptic consolidation and further acquisition of spatial memory was hereby examined by analyzing Arc and BDNF in standard environment and after behavioral training in Morris water maze (MWM). In standard environment, a cholinergic hypofunction induced by the toxin (192) IgG-saporin led to significant decreases in Arc protein and mRNA as well as in BDNF. Lesioned rats subjected to MWM showed a worse acquisition performance that was reversed after galantamine treatment. Recovery of memory acquisition was accompanied by normalization of Arc and BDNF levels in hippocampus. Stimulation of muscarinic, but not nicotinic receptors, in hippocampal primary neurons caused a rapid induction of Arc production. These data suggest that cholinergic denervation of hippocampus leads to deficits in muscarinic-dependent induction of Arc and a subsequent impairment of spatial memory acquisition.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Fibras Colinérgicas/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Proteínas do Citoesqueleto/genética , Feminino , Galantamina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/cirurgia , Imunotoxinas/farmacologia , Masculino , Transtornos da Memória/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Nicotínicos/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas
20.
Antioxidants (Basel) ; 10(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34439558

RESUMO

Blood-Brain barrier (BBB) disruption is a hallmark of central nervous system (CNS) dysfunction, and oxidative stress is one of the molecular mechanisms that may underlie this process. NADPH oxidases (NOX) are involved in oxidative stress-mediated vascular dysfunction and participate in the pathophysiology of its target organs. The NADPH oxidase 5 (NOX5) isoform is absent in rodents, and although little is known about the role it may play in disrupting the BBB, it has recently been implicated in experimental stroke. Our aim was to investigate the role of NADPH oxidase 5 (NOX5) in promoting vascular alterations and to identify its impact on the cognitive status of aged mice. No differences were detected in the arterial blood pressure or body weight between knock-in mice expressing endothelial NOX5 and the control mice. The Morris water maze test showed memory impairments in the aged knock-in mice expressing NOX5 compared with their control littermates. For assessing the BBB integrity, we studied the protein expression of two tight junction (TJ) proteins: Zonula occludens-1 (ZO-1) and occludin. Compared to the control animals, Aged NOX5 mice exhibited reduced levels of both proteins, demonstrating an alteration of the BBB integrity. Our data indicate that vascular NOX5 may favor behavioral changes with aging through oxidative stress-mediated BBB breakdown.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA