Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(17): 9431-9439, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284407

RESUMO

A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the "male pregnancy" gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.


Assuntos
Evolução Biológica , Reprodução/genética , Smegmamorpha/genética , Smegmamorpha/fisiologia , Animais , Feminino , Humanos , Masculino , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia
2.
Mol Biol Evol ; 35(3): 593-606, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216381

RESUMO

New genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization. In notothenioids, afgps evolved from an extant gene, yet the evolutionary origin of afgps in codfishes is unknown. Here, we demonstrate that afgps in codfishes have evolved de novo from non-coding DNA 13-18 Ma, coinciding with the cooling of the Northern Hemisphere. Using whole-genome sequence data from several codfishes and notothenioids, we find higher copy number of afgp in species exposed to more severe freezing suggesting a gene dosage effect. Notably, antifreeze function is lost in one lineage of codfishes analogous to the afgp losses in non-Antarctic notothenioids. This indicates that selection can eliminate the antifreeze function when freezing is no longer imminent. In addition, we show that evolution of afgp-assisting antifreeze potentiating protein genes (afpps) in notothenioids coincides with origin and lineage-specific losses of afgp. The origin of afgps in codfishes is one of the first examples of an essential gene born from non-coding DNA in a non-model species. Our study underlines the power of comparative genomics to uncover past molecular signatures of genome evolution, and further highlights the impact of de novo gene origin in response to a changing selection regime.

3.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076422

RESUMO

The aim of this study was to investigate differential expression profiles of the brown rot fungus Rhodonia placenta (previously Postia placenta) harvested at several time points when grown on radiata pine (Pinus radiata) and radiata pine with three different levels of modification by furfuryl alcohol, an environmentally benign commercial wood protection system. The entire gene expression pattern of a decay fungus was followed in untreated and modified wood from initial to advanced stages of decay. The results support the current model of a two-step decay mechanism, with the expression of genes related to initial oxidative depolymerization, followed by an accumulation of transcripts of genes related to the hydrolysis of cell wall polysaccharides. When the wood decay process is finished, the fungus goes into starvation mode after five weeks when grown on unmodified radiata pine wood. The pattern of repression of oxidative processes and oxalic acid synthesis found in radiata pine at later stages of decay is not mirrored for the high-furfurylation treatment. The high treatment level provided a more unpredictable expression pattern throughout the incubation period. Furfurylation does not seem to directly influence the expression of core plant cell wall-hydrolyzing enzymes, as a delayed and prolonged, but similar, pattern was observed in the radiata pine and the modified experiments. This indicates that the fungus starts a common decay process in the modified wood but proceeds at a slower pace as access to the plant cell wall polysaccharides is restricted. This is further supported by the downregulation of hydrolytic enzymes for the high treatment level at the last harvest point (mass loss, 14%). Moreover, the mass loss does not increase during the last weeks. Collectively, this indicates a potential threshold for lower mass loss for the high-furfurylation treatment.IMPORTANCE Fungi are important decomposers of woody biomass in natural habitats. Investigation of the mechanisms employed by decay fungi in their attempt to degrade wood is important for both the basic scientific understanding of ecology and carbon cycling in nature and for applied uses of woody materials. For wooden building materials, long service life and carbon storage are essential, but decay fungi are responsible for massive losses of wood in service. Thus, the optimization of durable wood products for the future is of major importance. In this study, we have investigated the fungal genetic response to furfurylated wood, a commercial environmentally benign wood modification approach that improves the service life of wood in outdoor applications. Our results show that there is a delayed wood decay by the fungus as a response to furfurylated wood, and new knowledge about the mechanisms behind the delay is provided.


Assuntos
Furanos/química , Polyporales/genética , Transcriptoma , Madeira/microbiologia , Biodegradação Ambiental , Furanos/administração & dosagem , Genes Fúngicos , Pinus/microbiologia , Polyporales/metabolismo , Madeira/química
4.
BMC Genomics ; 19(1): 186, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510660

RESUMO

BACKGROUND: The ballan wrasse (Labrus bergylta) belongs to a large teleost family containing more than 600 species showing several unique evolutionary traits such as lack of stomach and hermaphroditism. Agastric fish are found throughout the teleost phylogeny, in quite diverse and unrelated lineages, indicating stomach loss has occurred independently multiple times in the course of evolution. By assembling the ballan wrasse genome and transcriptome we aimed to determine the genetic basis for its digestive system function and appetite regulation. Among other, this knowledge will aid the formulation of aquaculture diets that meet the nutritional needs of agastric species. RESULTS: Long and short read sequencing technologies were combined to generate a ballan wrasse genome of 805 Mbp. Analysis of the genome and transcriptome assemblies confirmed the absence of genes that code for proteins involved in gastric function. The gene coding for the appetite stimulating protein ghrelin was also absent in wrasse. Gene synteny mapping identified several appetite-controlling genes and their paralogs previously undescribed in fish. Transcriptome profiling along the length of the intestine found a declining expression gradient from the anterior to the posterior, and a distinct expression profile in the hind gut. CONCLUSIONS: We showed gene loss has occurred for all known genes related to stomach function in the ballan wrasse, while the remaining functions of the digestive tract appear intact. The results also show appetite control in ballan wrasse has undergone substantial changes. The loss of ghrelin suggests that other genes, such as motilin, may play a ghrelin like role. The wrasse genome offers novel insight in to the evolutionary traits of this large family. As the stomach plays a major role in protein digestion, the lack of genes related to stomach digestion in wrasse suggests it requires formulated diets with higher levels of readily digestible protein than those for gastric species.


Assuntos
Evolução Biológica , Perfilação da Expressão Gênica , Perciformes/genética , Estômago/fisiologia , Animais , Apetite , Digestão , Trato Gastrointestinal , Genoma , Perciformes/fisiologia , Filogenia
5.
Proc Biol Sci ; 284(1853)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446692

RESUMO

Host-intrinsic factors as well as environmental changes are known to be strong evolutionary drivers defining the genetic foundation of immunity. Using a novel set of teleost genomes and a time-calibrated phylogeny, we here investigate the family of Toll-like receptor (TLR) genes and address the underlying evolutionary processes shaping the diversity of the first-line defence. Our findings reveal remarkable flexibility within the evolutionary design of teleost innate immunity characterized by prominent TLR gene losses and expansions. In the order of Gadiformes, expansions correlate with the loss of major histocompatibility complex class II (MHCII) and diversifying selection analyses support that this has fostered new immunological innovations in TLRs within this lineage. In teleosts overall, TLRs expansions correlate with species latitudinal distributions and maximum depth. By contrast, lineage-specific gene losses overlap with well-described changes in palaeoclimate (global ocean anoxia) and past Atlantic Ocean geography. In conclusion, we suggest that the evolvability of the teleost immune system has most likely played a prominent role in the survival and successful radiation of this lineage.


Assuntos
Evolução Biológica , Ecossistema , Peixes/imunologia , Sistema Imunitário , Imunidade Inata , Animais , Oceano Atlântico , Clima , Peixes/genética , Genes MHC da Classe II , Filogenia , Receptores Toll-Like/genética
6.
Front Cell Dev Biol ; 11: 1050323, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760361

RESUMO

Major histocompatibility complex (MHC) class I and II are crucial for the adaptive immune system because they are involved in peptide presentation to T cells. Until recently, it was believed that MHC genes and their associated immune components had been conserved since their evolutionary emergence in jawed fish. However, sequencing of the Atlantic cod (Gadus morhua) genome revealed a loss of MHC class II genes, and an extreme expansion of MHC class I genes. These findings lead to the hypothesis that a loss of the MHC class II pathway coincided with a more versatile use of MHC class I, but so far there is no direct experimental evidence in support of this. To gain a deeper understanding of the function of the expanded MHC class I, we selected five MHC class I gene variants representing five of the six clades identified in previous studies and investigated their intracellular localization in human and Atlantic cod larval cells. Intriguingly, we uncovered that all selected MHC class I variants localize to endolysosomal compartments in Atlantic cod cells. Additionally, by introducing point mutations or deletions in the cytosolic tail, we found that hypothetical sorting signals in the MHC class I cytosolic tail do not influence MHC class I trafficking. Moreover, we demonstrated that in Atlantic cod, tapasin and MHC class I colocalize on endolysosomes suggesting that peptide-loading assistance and stabilization of MHC class I occurs outside the endoplasmic reticulum. Altogether, our results demonstrate that MHC class I from Atlantic cod is sorted to the endolysosomal system, which may indicate that it interacts with exogenous peptides for potential cross presentation.

7.
Ecol Evol ; 12(10): e9395, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311407

RESUMO

Saltwater and freshwater environments have opposing physiological challenges, yet, there are fish species that are able to enter both habitats during short time spans, and as individuals they must therefore adjust quickly to osmoregulatory contrasts. In this study, we conducted an experiment to test for plastic responses to abrupt salinity changes in two populations of threespine stickleback, Gasterosteus aculeatus, representing two ecotypes (freshwater and ancestral saltwater). We exposed both ecotypes to abrupt native (control treatment) and non-native salinities (0‰ and 30‰) and sampled gill tissue for transcriptomic analyses after 6 h of exposure. To investigate genomic responses to salinity, we analyzed four different comparisons; one for each ecotype (in their control and exposure salinity; (1) and (2), one between ecotypes in their control salinity (3), and the fourth comparison included all transcripts identified in (3) that did not show any expressional changes within ecotype in either the control or the exposed salinity (4)). Abrupt salinity transfer affected the expression of 10 and 1530 transcripts for the saltwater and freshwater ecotype, respectively, and 1314 were differentially expressed between the controls, including 502 that were not affected by salinity within ecotype (fixed expression). In total, these results indicate that factors other than genomic expressional plasticity are important for osmoregulation in stickleback, due to the need for opposite physiological pathways to survive the abrupt change in salinity.

8.
Commun Biol ; 5(1): 689, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821077

RESUMO

Atlantic Cod (Gadus morhua) has lost the major histocompatibility complex class II presentation pathway. We recently identified CD8-positive T cells, B cells, and plasma cells in cod, but further characterisation of lymphocyte subsets is needed to elucidate immune adaptations triggered by the absence of CD4-positive T lymphocytes. Here, we use single-cell RNA sequencing to examine the lymphocyte heterogeneity in Atlantic cod spleen. We describe five T cell subsets and eight B cell subsets and propose a B cell trajectory of differentiation. Notably, we identify a subpopulation of T cells that are CD8-negative. Most of the CD8-negative T lymphocytes highly express the homologue of monocyte chemotactic protein 1b, and another subset of CD8-negative T lymphocytes express the homologue of the scavenger receptor m130. Uncovering the multiple lymphocyte cell sub-clusters reveals the different immune states present within the B and T cell populations, building a foundation for further work.


Assuntos
Gadus morhua , Animais , Gadus morhua/genética , Subpopulações de Linfócitos , Baço
9.
Front Immunol ; 11: 559555, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154745

RESUMO

The Atlantic cod's unusual immune system, entirely lacking the Major Histocompatibility class II pathway, has prompted intriguing questions about what mechanisms are used to combat bacterial infections and how immunological memory is generated. By single-cell RNA sequencing we here report an in-depth characterisation of cell types found in immune tissues, the spleen and peripheral blood leukocytes of Atlantic cod. Unbiased transcriptional clustering revealed eleven distinct immune cell signatures. Resolution at the single cell level enabled characterisation of the major cell subsets including the cytotoxic T cells, B cells, erythrocytes, thrombocytes, neutrophils, and macrophages. Additionally, to our knowledge we are the first to uncover cell subsets in Atlantic cod which may represent dendritic cells, natural killer-like cells, and a population of cytotoxic cells expressing GATA-3, a master transcription factor of T helper 2 cells. We further identify putative gene markers for each cluster and describe the relative proportions of each cell type in the spleen and peripheral blood leukocytes. Of the major haematopoietic cell populations, the lymphocytes make up 55 and 68% of the spleen and peripheral blood leukocytes respectively, while the myeloid cells make up 45 and 32%. By single-cell analysis, this study provides the most detailed molecular and cellular characterisation of the immune system of the Atlantic cod so far.


Assuntos
Proteínas de Peixes/genética , Gadus morhua/genética , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Análise de Célula Única , Transcriptoma , Animais , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Antígenos de Histocompatibilidade Classe II/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Análise de Célula Única/métodos
10.
Artigo em Inglês | MEDLINE | ID: mdl-31176987

RESUMO

Atlantic cod has lost the Major Histocompatibility complex class II pathway - central to pathogen presentation, humoral response and immunity. Here, we investigate the immunological response of Atlantic cod subsequent to dip vaccination with Vibrioanguillarum bacterin using transcriptome sequencing. The experiment was conducted on siblings from an Atlantic cod family found to be highly susceptible towards vibriosis where vaccination has demonstrated improved pathogen resistance. Gene expression analyses at 2, 4, 21 and 42 days post vaccination revealed GO-term enrichment for muscle, neuron and metabolism-related pathways. In-depth characterization of immune-related GO terms demonstrated down-regulation of MHCI antigen presentation, C-type lectin receptor signaling and granulocyte activation over time. Phagocytosis, interferon-gamma signaling and negative regulation of innate immunity were increasingly up-regulated over time. Individual differentially expressed immune genes implies weak initiation of acute phase proteins with little or no inflammation. Furthermore, gene expression indicates presence of T-cells, NK-like cells, B-cells and monocytes/macrophages. Three MHCI transcripts were up-regulated with B2M and SEC61. Overall, we find no clear immune-related transcriptomic response which could be attributed to Atlantic cod's alternative immune system. However, we cannot rule out that this response is related to vaccination protocol/sampling strategy. Earlier functional studies demonstrate significant memory in Atlantic cod post dip vaccination and combined with our results indicate the presence of other adaptive immunity mechanisms. In particular, we suggest that further investigations should look into CD8+ memory T-cells, γδ T-cells, T-cell independent memory or memory induced through NK-like/other lymphoid cells locally in the mucosal lining for this particular vaccination strategy.


Assuntos
Imunidade Adaptativa , Vacinas Bacterianas/imunologia , Gadus morhua/genética , Perfilação da Expressão Gênica , Imunidade Adaptativa/genética , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes/genética , Gadus morhua/imunologia , Memória Imunológica , Vibrio/imunologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-31054474

RESUMO

The genetic repertoire underlying teleost immunity has been shown to be highly variable. A rare example is Atlantic cod and its relatives Gadiformes that lacks a hallmark of vertebrate immunity: Major Histocompatibility Complex class II. No immunological studies so far have fully unraveled the functionality of this particular immune system. Through global transcriptomic profiling, we investigate the immune response and host-pathogen interaction of Atlantic cod infected with the facultative intracellular bacterium Francisella noatunensis. We find that Atlantic cod displays an overall classic innate immune response with inflammation, acute-phase proteins and cell recruitment through up-regulation of e.g. IL1B, fibrinogen, cathelicidin, hepcidin and several chemotactic cytokines such as the neutrophil attractants CXCL1 and CXCL8. In terms of adaptive immunity, we observe up-regulation of interferon gamma followed by up-regulation of several MHCI transcripts and genes related to antigen transport and loading. Finally, we find up-regulation of immunoglobulins and down-regulation of T-cell and NK-like cell markers. Our analyses also uncover some contradictory transcriptional findings such as up-regulation of anti-inflammatory IL10 as well as down-regulation of the NADPH oxidase complex and myeloperoxidase. This we interpret as the result of host-pathogen interactions where F. noatunensis modulates the immune response. In summary, our results suggest that Atlantic cod mounts a classic innate immune response as well as a neutrophil-driven response. In terms of adaptive immunity, both endogenous and exogenous antigens are being presented on MHCI and antibody production is likely enabled through direct B-cell stimulation with possible neutrophil help. Collectively, we have obtained novel insight in the orchestration of the Atlantic cod immune system and determined likely targets of F. noatunensis host-pathogen interactions.


Assuntos
Doenças dos Peixes/imunologia , Francisella/fisiologia , Gadus morhua/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Adaptativa , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Francisella/imunologia , Gadus morhua/genética , Gadus morhua/imunologia , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Transcriptoma
12.
Sci Rep ; 7(1): 7956, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801564

RESUMO

Understanding the genetic basis of adaptation is one of the main enigmas of evolutionary biology. Among vertebrates, hemoglobin has been well documented as a key trait for adaptation to different environments. Here, we investigate the role of hemoglobins in adaptation to ocean depth in the diverse teleost order Gadiformes, with species distributed at a wide range of depths varying in temperature, hydrostatic pressure and oxygen levels. Using genomic data we characterized the full hemoglobin (Hb) gene repertoire for subset of species within this lineage. We discovered a correlation between expanded numbers of Hb genes and ocean depth, with the highest numbers in species occupying shallower, epipelagic regions. Moreover, we demonstrate that the Hb genes have functionally diverged through diversifying selection. Our results suggest that the more variable environment in shallower water has led to selection for a larger Hb gene repertoire and that Hbs have a key role in adaptive processes in marine environments.


Assuntos
Gadiformes/genética , Hemoglobinas/genética , Oxigênio/análise , Sequenciamento Completo do Genoma/métodos , Adaptação Biológica , Animais , Evolução Molecular , Pressão Hidrostática , Oceanos e Mares , Filogenia , Seleção Genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA