Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anesthesiology ; 140(3): 610-627, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349760

RESUMO

How general anesthetics work remains a topic of ongoing study. A parallel field of research has sought to identify methods to reverse general anesthesia. Reversal agents could shorten patients' recovery time and potentially reduce the risk of postoperative complications. An incomplete understanding of the mechanisms of general anesthesia has hampered the pursuit for reversal agents. Nevertheless, the search for reversal agents has furthered understanding of the mechanisms underlying general anesthesia. The study of potential reversal agents has highlighted the importance of rigorous criteria to assess recovery from general anesthesia in animal models, and has helped identify key arousal systems (e.g., cholinergic, dopaminergic, and orexinergic systems) relevant to emergence from general anesthesia. Furthermore, the effects of reversal agents have been found to be inconsistent across different general anesthetics, revealing differences in mechanisms among these drugs. The presynapse and glia probably also contribute to general anesthesia recovery alongside postsynaptic receptors. The next stage in the search for reversal agents will have to consider alternate mechanisms encompassing the tripartite synapse.


Assuntos
Anestésicos Gerais , Animais , Humanos , Anestesia Geral/efeitos adversos , Cafeína , Nível de Alerta , Dopamina
2.
Br J Anaesth ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38965013

RESUMO

BACKGROUND: Dopaminergic psychostimulants can restore arousal in anaesthetised animals, and dopaminergic signalling contributes to hippocampal-dependent memory formation. We tested the hypothesis that dopaminergic psychostimulants can antagonise the amnestic effects of isoflurane on visuospatial working memory. METHODS: Sixteen adult Sprague-Dawley rats were trained on a trial-unique nonmatching-to-location (TUNL) task which assessed the ability to identify a novel touchscreen location after a fixed delay. Once trained, the effects of low-dose isoflurane (0.3 vol%) on task performance and activity, assessed by infrared beam breaks, were assessed. We attempted to rescue deficits in performance and activity with a dopamine D1 receptor agonist (chloro-APB), a noradrenergic reuptake inhibitor (atomoxetine), and a mixed dopamine/norepinephrine releasing agent (dextroamphetamine). Anaesthetic induction, emergence, and recovery from anaesthesia were also investigated. RESULTS: Low-dose isoflurane impaired working memory in a sex-independent and intra-trial delay-independent manner as assessed by task performance, and caused an overall reduction in activity. Administration of chloro-APB, atomoxetine, or dextroamphetamine did not restore visuospatial working memory, but chloro-APB and dextroamphetamine recovered arousal to levels observed in the baseline awake state. Performance did not differ between induction and emergence. Animals recovered to baseline performance within 15 min of discontinuing isoflurane. CONCLUSIONS: Low-dose isoflurane impairs visuospatial working memory in a nondurable and delay-independent manner that potentially implicates non-hippocampal structures in isoflurane-induced memory deficits. Dopaminergic psychostimulants counteracted sedation but did not reverse memory impairments, suggesting that isoflurane-induced amnesia and isoflurane-induced sedation have distinct underlying mechanisms that can be antagonised independently.

3.
Br J Anaesth ; 131(1): 67-78, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142466

RESUMO

BACKGROUND: Although sex differences in anaesthetic sensitivity have been reported, what underlies these differences is unknown. In rodents, one source of variability in females is the oestrous cycle. Here we test the hypothesis that the oestrous cycle impacts emergence from general anaesthesia. METHODS: Time to emergence was measured after isoflurane (2 vol% for 1 h), sevoflurane (3 vol% for 20 min), dexmedetomidine (50 µg kg-1 i.v., infused over 10 min), or propofol (10 mg kg-1 i.v. bolus) during proestrus, oestrus, early dioestrus, and late dioestrus in female Sprague-Dawley rats (n=24). EEG recordings were taken during each test for power spectral analysis. Serum was analysed for 17ß-oestradiol and progesterone concentrations. The effect of oestrous cycle stage on return of righting latency was assessed using a mixed model. The association between righting latency and serum hormone concentration was tested by linear regression. Mean arterial blood pressure and arterial blood gases were assessed in a subset of rats after dexmedetomidine and compared in a mixed model. RESULTS: Oestrous cycle did not affect righting latency after isoflurane, sevoflurane, or propofol. When in the early dioestrus stage, rats emerged more rapidly from dexmedetomidine than in the proestrus (P=0.0042) or late dioestrus (P=0.0230) stage and showed reduced overall power in frontal EEG spectra 30 min after dexmedetomidine (P=0.0049). 17ß-Oestradiol and progesterone serum concentrations did not correlate with righting latency. Oestrous cycle did not affect mean arterial blood pressure or blood gases during dexmedetomidine. CONCLUSIONS: In female rats, the oestrous cycle significantly impacts emergence from dexmedetomidine-induced unconsciousness. However, 17ß-oestradiol and progesterone serum concentrations do not correlate with the observed changes.


Assuntos
Dexmedetomidina , Isoflurano , Propofol , Ratos , Feminino , Masculino , Animais , Propofol/farmacologia , Sevoflurano/farmacologia , Isoflurano/farmacologia , Dexmedetomidina/farmacologia , Progesterona/farmacologia , Ratos Sprague-Dawley , Anestesia Geral , Estradiol/farmacologia , Gases
4.
Curr Opin Anaesthesiol ; 36(5): 468-475, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552017

RESUMO

PURPOSE OF REVIEW: To summarize the recent preclinical findings investigating dopaminergic circuits for their involvement in reversing anesthetic-induced unconsciousness. RECENT FINDINGS: The release of dopamine from the ventral tegmental area onto dopamine D1 receptor-expressing neurons in the nucleus accumbens promotes emergence following general anesthesia. Two relevant targets of dopamine D1 receptor-expressing neurons in the nucleus accumbens include the lateral hypothalamus and ventral pallidum. Activating mesocortical dopaminergic projections from the ventral tegmental area to the prelimbic cortex has also been shown to hasten emergence from general anesthesia. In contrast, the nigrostriatal dopamine pathway is not involved in regulating anesthetic emergence. The role of the tuberoinfundibular endocrine dopamine pathway remains to be tested; however, recent studies have identified an important function of neuroendocrine signaling on modulating general anesthesia. SUMMARY: Potential avenues for accelerating anesthetic emergence may be found through targeting specific arousal-promoting pathways in the brain. Accumulating evidence from rodent studies manipulating cell type- and circuit-specific signaling pathways have identified dopamine as a potent modulator of general anesthesia. Specifically, dopamine signaling along the mesolimbic and mesocortical pathways plays a fundamental role in regulating consciousness.


Assuntos
Anestésicos , Dopamina , Humanos , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Área Tegmentar Ventral/metabolismo , Receptores de Dopamina D1/metabolismo
5.
Anesthesiology ; 137(6): 716-732, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36170545

RESUMO

BACKGROUND: Patients resuscitated from cardiac arrest are routinely sedated during targeted temperature management, while the effects of sedation on cerebral physiology and outcomes after cardiac arrest remain to be determined. The authors hypothesized that sedation would improve survival and neurologic outcomes in mice after cardiac arrest. METHODS: Adult C57BL/6J mice of both sexes were subjected to potassium chloride-induced cardiac arrest and cardiopulmonary resuscitation. Starting at the return of spontaneous circulation or at 60 min after return of spontaneous circulation, mice received intravenous infusion of propofol at 40 mg · kg-1 · h-1, dexmedetomidine at 1 µg · kg-1 · h-1, or normal saline for 2 h. Body temperature was lowered and maintained at 33°C during sedation. Cerebral blood flow was measured for 4 h postresuscitation. Telemetric electroencephalogram (EEG) was recorded in freely moving mice from 3 days before up to 7 days after cardiac arrest. RESULTS: Sedation with propofol or dexmedetomidine starting at return of spontaneous circulation improved survival in hypothermia-treated mice (propofol [13 of 16, 81%] vs. no sedation [4 of 16, 25%], P = 0.008; dexmedetomidine [14 of 16, 88%] vs. no sedation [4 of 16, 25%], P = 0.002). Mice receiving no sedation exhibited cerebral hyperemia immediately after resuscitation and EEG power remained less than 30% of the baseline in the first 6 h postresuscitation. Administration of propofol or dexmedetomidine starting at return of spontaneous circulation attenuated cerebral hyperemia and increased EEG slow oscillation power during and early after sedation (40 to 80% of the baseline). In contrast, delayed sedation failed to improve outcomes, without attenuating cerebral hyperemia and inducing slow-wave activity. CONCLUSIONS: Early administration of sedation with propofol or dexmedetomidine improved survival and neurologic outcomes in mice resuscitated from cardiac arrest and treated with hypothermia. The beneficial effects of sedation were accompanied by attenuation of the cerebral hyperemic response and enhancement of electroencephalographic slow-wave activity.


Assuntos
Reanimação Cardiopulmonar , Dexmedetomidina , Parada Cardíaca , Hiperemia , Hipotermia Induzida , Hipotermia , Propofol , Masculino , Feminino , Animais , Camundongos , Propofol/efeitos adversos , Dexmedetomidina/efeitos adversos , Hiperemia/terapia , Camundongos Endogâmicos C57BL , Parada Cardíaca/tratamento farmacológico , Modelos Animais de Doenças , Eletroencefalografia
6.
Anesthesiology ; 135(4): 633-648, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34270686

RESUMO

BACKGROUND: Parabrachial nucleus excitation reduces cortical delta oscillation (0.5 to 4 Hz) power and recovery time associated with anesthetics that enhance γ-aminobutyric acid type A receptor action. The effects of parabrachial nucleus excitation on anesthetics with other molecular targets, such as dexmedetomidine and ketamine, remain unknown. The hypothesis was that parabrachial nucleus excitation would cause arousal during dexmedetomidine and ketamine anesthesia. METHODS: Designer Receptors Exclusively Activated by Designer Drugs were used to excite calcium/calmodulin-dependent protein kinase 2α-positive neurons in the parabrachial nucleus region of adult male rats without anesthesia (nine rats), with dexmedetomidine (low dose: 0.3 µg · kg-1 · min-1 for 45 min, eight rats; high dose: 4.5 µg · kg-1 · min-1 for 10 min, seven rats), or with ketamine (low dose: 2 mg · kg-1 · min-1 for 30 min, seven rats; high dose: 4 mg · kg-1 · min-1 for 15 min, eight rats). For control experiments (same rats and treatments), the Designer Receptors Exclusively Activated by Designer Drugs were not excited. The electroencephalogram and anesthesia recovery times were recorded and analyzed. RESULTS: Parabrachial nucleus excitation reduced delta power in the prefrontal electroencephalogram with low-dose dexmedetomidine for the 150-min analyzed period, excepting two brief periods (peak median bootstrapped difference [clozapine-N-oxide - saline] during dexmedetomidine infusion = -6.06 [99% CI = -12.36 to -1.48] dB, P = 0.007). However, parabrachial nucleus excitation was less effective at reducing delta power with high-dose dexmedetomidine and low- and high-dose ketamine (peak median bootstrapped differences during high-dose [dexmedetomidine, ketamine] infusions = [-1.93, -0.87] dB, 99% CI = [-4.16 to -0.56, -1.62 to -0.18] dB, P = [0.006, 0.019]; low-dose ketamine had no statistically significant decreases during the infusion). Recovery time differences with parabrachial nucleus excitation were not statistically significant for dexmedetomidine (median difference for [low, high] dose = [1.63, 11.01] min, 95% CI = [-20.06 to 14.14, -20.84 to 23.67] min, P = [0.945, 0.297]) nor low-dose ketamine (median difference = 12.82 [95% CI: -3.20 to 39.58] min, P = 0.109) but were significantly longer for high-dose ketamine (median difference = 11.38 [95% CI: 1.81 to 24.67] min, P = 0.016). CONCLUSIONS: These results suggest that the effectiveness of parabrachial nucleus excitation to change the neurophysiologic and behavioral effects of anesthesia depends on the anesthetic's molecular target.


Assuntos
Ritmo Delta/efeitos dos fármacos , Dexmedetomidina/farmacologia , Ácido Glutâmico , Ketamina/farmacologia , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Anestesia/métodos , Anestésicos Dissociativos/farmacologia , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Ritmo Delta/fisiologia , Ácido Glutâmico/fisiologia , Hipnóticos e Sedativos/farmacologia , Masculino , Neurônios/fisiologia , Núcleos Parabraquiais/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Br J Anaesth ; 127(3): 340-343, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34330415

RESUMO

In this issue of the British Journal of Anaesthesia, Joksimovic and colleagues report significant sex differences in sensitivity to the behavioural and neurophysiological effects of 3ß-OH, a novel neurosteroid anesthetic. Female rats were more sensitive to the effects of 3ß-OH than male rats, although the mechanims remain unclear. Sex differences have been understudied in anaesthesia research, and this article by Joksimovic and colleagues emphasizes the need to devote more effort to understanding these differences.


Assuntos
Anestesia , Anestésicos , Preparações Farmacêuticas , Anestésicos/farmacologia , Animais , Feminino , Masculino , Ratos
8.
Nature ; 586(7827): 31-32, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939081
9.
Anesth Analg ; 132(5): 1254-1264, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857967

RESUMO

General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.


Assuntos
Anestesia Geral , Anestésicos Gerais/efeitos adversos , Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Sono , Período de Recuperação da Anestesia , Anestesia Geral/efeitos adversos , Animais , Encéfalo/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Humanos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Terminologia como Assunto
10.
Anesth Analg ; 132(4): e50-e55, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33560660

RESUMO

Many general anesthetics potentiate gamma-aminobutyric acid (GABA) A receptors but their neuroanatomic sites of action are less clear. GABAergic neurons in the rostromedial tegmental nucleus (RMTg) send inhibitory projections to multiple arousal-promoting nuclei, but the role of these neurons in modulating consciousness is unknown. In this study, designer receptors exclusively activated by designer drugs (DREADDs) were targeted to RMTg GABAergic neurons of Vgat-ires-Cre mice. DREADDs expression was found in the RMTg and other brainstem regions. Activation of these neurons decreased movement and exploratory behavior, impaired motor coordination, induced electroencephalogram (EEG) oscillations resembling nonrapid eye movement (NREM) sleep without loss of righting and reduced the dose requirement for sevoflurane-induced unconsciousness. These results suggest that GABAergic neurons in the RMTg and other brainstem regions promote sedation and facilitate sevoflurane-induced unconsciousness.


Assuntos
Anestésicos Inalatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Tronco Encefálico/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Sevoflurano/farmacologia , Sono/efeitos dos fármacos , Animais , Tronco Encefálico/metabolismo , Ondas Encefálicas/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Feminino , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos
11.
Anesthesiology ; 133(1): 19-30, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32349073

RESUMO

The neural circuits underlying the distinct endpoints that define general anesthesia remain incompletely understood. It is becoming increasingly evident, however, that distinct pathways in the brain that mediate arousal and pain are involved in various endpoints of general anesthesia. To critically evaluate this growing body of literature, familiarity with modern tools and techniques used to study neural circuits is essential. This Readers' Toolbox article describes four such techniques: (1) electrical stimulation, (2) local pharmacology, (3) optogenetics, and (4) chemogenetics. Each technique is explained, including the advantages, disadvantages, and other issues that must be considered when interpreting experimental results. Examples are provided of studies that probe mechanisms of anesthesia using each technique. This information will aid researchers and clinicians alike in interpreting the literature and in evaluating the utility of these techniques in their own research programs.


Assuntos
Anestesia Geral , Anestesiologia , Anestésicos/farmacologia , Vias Neurais/efeitos dos fármacos , Animais , Estimulação Elétrica , Humanos , Optogenética , Pesquisa
12.
Neurocrit Care ; 33(2): 364-375, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794142

RESUMO

There are currently no therapies proven to promote early recovery of consciousness in patients with severe brain injuries in the intensive care unit (ICU). For patients whose families face time-sensitive, life-or-death decisions, treatments that promote recovery of consciousness are needed to reduce the likelihood of premature withdrawal of life-sustaining therapy, facilitate autonomous self-expression, and increase access to rehabilitative care. Here, we present the Connectome-based Clinical Trial Platform (CCTP), a new paradigm for developing and testing targeted therapies that promote early recovery of consciousness in the ICU. We report the protocol for STIMPACT (Stimulant Therapy Targeted to Individualized Connectivity Maps to Promote ReACTivation of Consciousness), a CCTP-based trial in which intravenous methylphenidate will be used for targeted stimulation of dopaminergic circuits within the subcortical ascending arousal network (ClinicalTrials.gov NCT03814356). The scientific premise of the CCTP and the STIMPACT trial is that personalized brain network mapping in the ICU can identify patients whose connectomes are amenable to neuromodulation. Phase 1 of the STIMPACT trial is an open-label, safety and dose-finding study in 22 patients with disorders of consciousness caused by acute severe traumatic brain injury. Patients in Phase 1 will receive escalating daily doses (0.5-2.0 mg/kg) of intravenous methylphenidate over a 4-day period and will undergo resting-state functional magnetic resonance imaging and electroencephalography to evaluate the drug's pharmacodynamic properties. The primary outcome measure for Phase 1 relates to safety: the number of drug-related adverse events at each dose. Secondary outcome measures pertain to pharmacokinetics and pharmacodynamics: (1) time to maximal serum concentration; (2) serum half-life; (3) effect of the highest tolerated dose on resting-state functional MRI biomarkers of connectivity; and (4) effect of each dose on EEG biomarkers of cerebral cortical function. Predetermined safety and pharmacodynamic criteria must be fulfilled in Phase 1 to proceed to Phase 2A. Pharmacokinetic data from Phase 1 will also inform the study design of Phase 2A, where we will test the hypothesis that personalized connectome maps predict therapeutic responses to intravenous methylphenidate. Likewise, findings from Phase 2A will inform the design of Phase 2B, where we plan to enroll patients based on their personalized connectome maps. By selecting patients for clinical trials based on a principled, mechanistic assessment of their neuroanatomic potential for a therapeutic response, the CCTP paradigm and the STIMPACT trial have the potential to transform the therapeutic landscape in the ICU and improve outcomes for patients with severe brain injuries.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Conectoma , Estado de Consciência , Humanos , Unidades de Terapia Intensiva , Resultado do Tratamento
13.
Anesth Analg ; 128(4): 726-736, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883418

RESUMO

The question of how general anesthetics suppress consciousness has persisted since the mid-19th century, but it is only relatively recently that the field has turned its focus to a systematic understanding of emergence. Once assumed to be a purely passive process, spontaneously occurring as residual levels of anesthetics dwindle below a critical value, emergence from general anesthesia has been reconsidered as an active and controllable process. Emergence is driven by mechanisms that can be distinct from entry to the anesthetized state. In this narrative review, we focus on the burgeoning scientific understanding of anesthetic emergence, summarizing current knowledge of the neurotransmitter, neuromodulators, and neuronal groups that prime the brain as it prepares for its journey back from oblivion. We also review evidence for possible strategies that may actively bias the brain back toward the wakeful state.


Assuntos
Anestesia Geral , Anestésicos Gerais/efeitos adversos , Anestésicos Gerais/farmacologia , Encéfalo/efeitos dos fármacos , Neurônios/fisiologia , Vigília/efeitos dos fármacos , Acetilcolina/metabolismo , Adenosina/metabolismo , Período de Recuperação da Anestesia , Animais , Nível de Alerta/efeitos dos fármacos , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Dopamina/metabolismo , Humanos , Neurotransmissores/metabolismo , Norepinefrina/metabolismo , Orexinas/metabolismo , Sono/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
14.
Proc Natl Acad Sci U S A ; 113(45): 12826-12831, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791160

RESUMO

Dopamine (DA) promotes wakefulness, and DA transporter inhibitors such as dextroamphetamine and methylphenidate are effective for increasing arousal and inducing reanimation, or active emergence from general anesthesia. DA neurons in the ventral tegmental area (VTA) are involved in reward processing, motivation, emotion, reinforcement, and cognition, but their role in regulating wakefulness is less clear. The current study was performed to test the hypothesis that selective optogenetic activation of VTA DA neurons is sufficient to induce arousal from an unconscious, anesthetized state. Floxed-inverse (FLEX)-Channelrhodopsin2 (ChR2) expression was targeted to VTA DA neurons in DA transporter (DAT)-cre mice (ChR2+ group; n = 6). Optical VTA stimulation in ChR2+ mice during continuous, steady-state general anesthesia (CSSGA) with isoflurane produced behavioral and EEG evidence of arousal and restored the righting reflex in 6/6 mice. Pretreatment with the D1 receptor antagonist SCH-23390 before optical VTA stimulation inhibited the arousal responses and restoration of righting in 6/6 ChR2+ mice. In control DAT-cre mice, the VTA was targeted with a viral vector lacking the ChR2 gene (ChR2- group; n = 5). VTA optical stimulation in ChR2- mice did not restore righting or produce EEG changes during isoflurane CSSGA in 5/5 mice. These results provide compelling evidence that selective stimulation of VTA DA neurons is sufficient to induce the transition from an anesthetized, unconscious state to an awake state, suggesting critical involvement in behavioral arousal.

15.
Neurobiol Dis ; 110: 47-58, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29141182

RESUMO

Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication. Seizure-induced respiratory arrest (S-IRA) occurs in many witnessed SUDEP patients and animal models as an initiating event leading to death. Thus, understanding the mechanisms underlying S-IRA will advance the development of preventive strategies against SUDEP. Serotonin (5-HT) is an important modulator for many vital functions, including respiration and arousal, and a deficiency of 5-HT signaling is strongly implicated in S-IRA in animal models, including the DBA/1 mouse. However, the brain structures that contribute to S-IRA remain elusive. We hypothesized that the dorsal raphe (DR), which sends 5-HT projections to the forebrain, is implicated in S-IRA. The present study used optogenetics in the DBA/1 mouse model of SUDEP to selectively activate 5-HT neurons in the DR. Photostimulation of DR 5-HT neurons significantly and reversibly reduced the incidence of S-IRA evoked by acoustic stimulation. Activation of 5-HT neurons in the DR suppressed tonic seizures in most DBA/1 mice without altering the seizure latency and duration of wild running and clonic seizures evoked by acoustic stimulation. This suppressant effect of photostimulation on S-IRA is independent of seizure models, as optogenetic stimulation of DR also reduced S-IRA induced by pentylenetetrazole, a proconvulsant widely used to model human generalized seizures. The S-IRA-suppressing effect of photostimulation was increased by 5-hydroxytryptophan, a chemical precursor for 5-HT synthesis, and was reversed by ondansetron, a specific 5-HT3 receptor antagonist, indicating that reduction of S-IRA by photostimulation of the DR is specifically mediated by enhanced 5-HT neurotransmission. Our findings suggest that deficits in 5-HT neurotransmission in the DR are implicated in S-IRA in DBA/1 mice, and that targeted intervention in the DR is potentially useful for prevention of SUDEP.


Assuntos
Morte Súbita/etiologia , Núcleo Dorsal da Rafe/metabolismo , Estimulação Luminosa , Insuficiência Respiratória/etiologia , Convulsões/complicações , Neurônios Serotoninérgicos/metabolismo , Animais , Modelos Animais de Doenças , Núcleo Dorsal da Rafe/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Optogenética , Estimulação Luminosa/métodos , Insuficiência Respiratória/fisiopatologia , Convulsões/fisiopatologia , Neurônios Serotoninérgicos/patologia , Serotonina/metabolismo
16.
BMC Anesthesiol ; 17(1): 76, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615047

RESUMO

BACKGROUND: Volatile anesthetics increase levels of the neurotransmitter nitric oxide (NO) and the secondary messenger molecule cyclic guanosine monophosphate (cGMP) in the brain. NO activates the enzyme guanylyl cyclase (GC) to produce cGMP. We hypothesized that the NO-GC-cGMP pathway contributes to anesthesia-induced unconsciousness. METHODS: Sevoflurane-induced loss and return of righting reflex (LORR and RORR, respectively) were studied in wild-type mice (WT) and in mice congenitally deficient in the GC-1α subunit (GC-1-/- mice). Spatial distributions of GC-1α and the GC-2α subunit in the brain were visualized by in situ hybridization. Brain cGMP levels were measured in WT and GC-1-/- mice after inhaling oxygen with or without 1.2% sevoflurane for 20 min. RESULTS: Higher concentrations of sevoflurane were required to induce LORR in GC-1-/- mice than in WT mice (1.5 ± 0.1 vs. 1.1 ± 0.2%, respectively, n = 14 and 14, P < 0.0001). Similarly, RORR occurred at higher concentrations of sevoflurane in GC-1-/- mice than in WT mice (1.0 ± 0.1 vs. 0.8 ± 0.1%, respectively, n = 14 and 14, P < 0.0001). Abundant GC-1α and GC-2α mRNA expression was detected in the cerebral cortex, medial habenula, hippocampus, and cerebellum. Inhaling 1.2% sevoflurane for 20 min increased cGMP levels in the brains of WT mice from 2.6 ± 2.0 to 5.5 ± 3.7 pmol/mg protein (n = 13 and 10, respectively, P = 0.0355) but not in GC-1-/- mice. CONCLUSION: Congenital deficiency of GC-1α abolished the ability of sevoflurane anesthesia to increase cGMP levels in the whole brain, and increased the concentration of sevoflurane required to induce LORR. Impaired NO-cGMP signaling raises the threshold for producing sevoflurane-induced unconsciousness in mice.


Assuntos
Anestésicos Inalatórios/farmacologia , Guanilato Ciclase/genética , Éteres Metílicos/farmacologia , Animais , Encéfalo/metabolismo , Guanosina Monofosfato/metabolismo , Camundongos Knockout , Reflexo de Endireitamento/efeitos dos fármacos , Sevoflurano
18.
Anesth Analg ; 123(5): 1210-1219, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26991753

RESUMO

BACKGROUND: Although emergence from general anesthesia is clinically treated as a passive process driven by the pharmacokinetics of drug clearance, agents that hasten recovery from general anesthesia may be useful for treating delayed emergence, emergence delirium, and postoperative cognitive dysfunction. Activation of central monoaminergic neurotransmission with methylphenidate has been shown to induce reanimation (active emergence) from general anesthesia. Cholinergic neurons in the brainstem and basal forebrain are also known to promote arousal. The objective of this study was to test the hypothesis that physostigmine, a centrally acting cholinesterase inhibitor, induces reanimation from isoflurane anesthesia in adult rats. METHODS: The dose-dependent effects of physostigmine on time to emergence from a standardized isoflurane general anesthetic were tested. It was then determined whether physostigmine restores righting during continuous isoflurane anesthesia. In a separate group of rats with implanted extradural electrodes, physostigmine was administered during continuous inhalation of 1.0% isoflurane, and the electroencephalogram changes were recorded. Finally, 2.0% isoflurane was used to induce burst suppression, and the effects of physostigmine and methylphenidate on burst suppression probability (BSP) were tested. RESULTS: Physostigmine delayed time to emergence from isoflurane anesthesia at doses ≥0.2 mg/kg (n = 9). During continuous isoflurane anesthesia (0.9% ± 0.1%), physostigmine did not restore righting (n = 9). Blocking the peripheral side effects of physostigmine with the coadministration of glycopyrrolate (a muscarinic antagonist that does not cross the blood-brain barrier) produced similar results (n = 9 each). However, during inhalation of 1.0% isoflurane, physostigmine shifted peak electroencephalogram power from δ (<4 Hz) to θ (4-8 Hz) in 6 of 6 rats. During continuous 2.0% isoflurane anesthesia, physostigmine induced large, statistically significant decreases in BSP in 6 of 6 rats, whereas methylphenidate did not. CONCLUSIONS: Unlike methylphenidate, physostigmine does not accelerate time to emergence from isoflurane anesthesia and does not restore righting during continuous isoflurane anesthesia. However, physostigmine consistently decreases BSP during deep isoflurane anesthesia, whereas methylphenidate does not. These findings suggest that activation of cholinergic neurotransmission during isoflurane anesthesia produces arousal states that are distinct from those induced by monoaminergic activation.


Assuntos
Anestesia Geral/métodos , Nível de Alerta/efeitos dos fármacos , Isoflurano/administração & dosagem , Metilfenidato/administração & dosagem , Fisostigmina/administração & dosagem , Anestésicos Inalatórios/administração & dosagem , Animais , Nível de Alerta/fisiologia , Inibidores da Colinesterase/administração & dosagem , Relação Dose-Resposta a Droga , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley
19.
Epilepsy Behav ; 45: 1-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25771493

RESUMO

Sudden unexpected death in epilepsy (SUDEP) is a fatal epileptic event. DBA/1 mice are a relevant animal model for the study of SUDEP, as these mice exhibit seizure-induced respiratory arrest (S-IRA) leading to death, which has been observed in patients with witnessed SUDEP. Fluoxetine, a selective serotonin (5-hydroxytryptamine or 5-HT) reuptake inhibitor (SSRI), reduces S-IRA in DBA/1 mice. Given that DBA/1 mice with S-IRA can be resuscitated using a ventilator, we hypothesized that breathing stimulants can prevent S-IRA and that fluoxetine prevents S-IRA by enhancing ventilation in these mice. Spontaneous respiratory function in anesthetized or awake DBA/1 mice was examined using noninvasive plethysmography before and after administering fluoxetine or breathing stimulants, doxapram, and 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine (PK-THPP). The effects of these drugs on S-IRA in DBA/1 mice were tested. As reported previously, systemic administration of fluoxetine reduced S-IRA in awake DBA/1 mice, but fluoxetine in anesthetized and awake DBA/1 mice did not increase basal ventilation or the ventilatory response to 7% CO2. Both doxapram and PK-THPP increased ventilation in room air and in air+7% CO2 in anesthetized DBA/1 mice. However, neither of the breathing stimulants reduced the incidence of S-IRA. Our studies confirm that fluoxetine reduces S-IRA in DBA/1 mice without enhancing basal ventilation in the absence of seizures. Although breathing stimulants increased ventilation in the absence of seizures, they were ineffective in reducing S-IRA, indicating that drug-induced increases in ventilation are insufficient to compensate for S-IRA in DBA/1 mice.


Assuntos
Morte Súbita/prevenção & controle , Epilepsia/complicações , Fluoxetina/uso terapêutico , Ventilação Pulmonar/efeitos dos fármacos , Insuficiência Respiratória/prevenção & controle , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Animais , Morte Súbita/etiologia , Modelos Animais de Doenças , Fluoxetina/farmacologia , Camundongos , Camundongos Endogâmicos DBA , Insuficiência Respiratória/etiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
20.
Anesthesiology ; 121(2): 311-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24398816

RESUMO

BACKGROUND: Methylphenidate or a D1 dopamine receptor agonist induces reanimation (active emergence) from general anesthesia. The authors tested whether electrical stimulation of dopaminergic nuclei also induces reanimation from general anesthesia. METHODS: In adult rats, a bipolar insulated stainless steel electrode was placed in the ventral tegmental area (VTA, n = 5) or substantia nigra (n = 5). After a minimum 7-day recovery period, the isoflurane dose sufficient to maintain loss of righting was established. Electrical stimulation was initiated and increased in intensity every 3 min to a maximum of 120 µA. If stimulation restored the righting reflex, an additional experiment was performed at least 3 days later during continuous propofol anesthesia. Histological analysis was conducted to identify the location of the electrode tip. In separate experiments, stimulation was performed in the prone position during general anesthesia with isoflurane or propofol, and the electroencephalogram was recorded. RESULTS: To maintain loss of righting, the dose of isoflurane was 0.9% ± 0.1 vol%, and the target plasma dose of propofol was 4.4 ± 1.1 µg/ml (mean ± SD). In all rats with VTA electrodes, electrical stimulation induced a graded arousal response including righting that increased with current intensity. VTA stimulation induced a shift in electroencephalogram peak power from δ (<4 Hz) to θ (4-8 Hz). In all rats with substantia nigra electrodes, stimulation did not elicit an arousal response or significant electroencephalogram changes. CONCLUSIONS: Electrical stimulation of the VTA, but not the substantia nigra, induces reanimation during general anesthesia with isoflurane or propofol. These results are consistent with the hypothesis that dopamine release by VTA neurons, but not substantia nigra neurons, induces reanimation from general anesthesia.


Assuntos
Período de Recuperação da Anestesia , Anestesia Geral , Área Tegmentar Ventral/fisiologia , Anestesia Intravenosa , Anestésicos Intravenosos/farmacologia , Animais , Nível de Alerta/efeitos dos fármacos , Dopamina/fisiologia , Estimulação Elétrica , Eletrodos Implantados , Eletroencefalografia/efeitos dos fármacos , Masculino , Propofol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores Dopaminérgicos/fisiologia , Reflexo/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/fisiologia , Área Tegmentar Ventral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA