Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Expert Syst Appl ; 214: 119009, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36312907

RESUMO

The COVID-19 pandemic has affected people's lives worldwide. Among various strategies being applied to addressing such a global crisis, public vaccination has been arguably the most appropriate approach to control a pandemic. However, vaccine supply chain and management have become a new challenge for governments. In this study, a solution for the vaccine supply chain is presented to address the hurdles in the public vaccination program according to the concerns of the government and the organizations involved. For this purpose, a robust bi-level optimization model is proposed. At the upper level, the risk of mortality due to the untimely supply of the vaccine and the risk of inequality in the distribution of the vaccine is considered. All costs related to the vaccine supply chain are considered at the lower level, including the vaccine supply, allocation of candidate centers for vaccine injection, cost of maintenance and injection, transportation cost, and penalty cost due to the vaccine shortage. In addition, the uncertainty of demand for vaccines is considered with multiple scenarios of different demand levels. Numerical experiments are conducted based on the vaccine supply chain in Kermanshah, Iran, and the results show that the proposed model significantly reduces the risk of mortality and inequality in the distribution of vaccines as well as the total cost, which leads to managerial insights for better coordination of the vaccination network during the COVID-19 pandemic.

2.
Sci Rep ; 13(1): 4246, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918689

RESUMO

Conventional Wilkinson power dividers (WPDs) can provide acceptable performance close to the nominal center frequency. However, these WPDs can also exhibit poor out-of-band performance while requiring a large footprint. In order to improve on the current state of the art, a modified microstrip WPD is proposed that exhibits a substantially improved stopband and high isolation. A lowpass filter (LPF) structure is utilized in both branches of the power divider to provide harmonic suppression. According to the obtained results, the input return loss (|S11|), output return loss (|S22|), output insertion loss (|S21|) and isolation (|S32|) are better than 34.2 dB, 26.2 dB, 3.52 dB and 31.2 dB, respectively. The proposed modified WPD has a wide 20 dB stopband (from 2.54 GHz to 13.48 GHz) and filters the second to seventh harmonics with attenuation levels of greater than 20 dB. The proposed WPD has a small size of 33.8 mm × 27 mm (0.42 λg × 0.33 λg), where λg is the guided wavelength at the operating frequency of 1.8 GHz. The WPD has been fabricated and tested and shows good agreement between simulated and measured results and the proposed design has desirable characteristics for LTE and GSM applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA