Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35684907

RESUMO

The recent growth and spread of smart sensor technologies make these connected devices suitable for diagnostic and monitoring in different fields. In particular, these sensors are useful in diagnostics for control of diseases or during rehabilitation. They are also extensively used in the monitoring field, both by non-expert and expert users, to monitor health status and progress during a sports activity. For athletes, these devices could be used to control and enhance their performance. This development has led to the realization of miniaturized sensors that are wearable during different sporting activities without interfering with the movements of the athlete. The use of these sensors, during training or racing, opens new frontiers for the understanding of motions and causes of injuries. This pilot study introduced a motion analysis system to monitor Alpine ski activities during training sessions. Through five inertial measurement units (IMUs), placed on five points of the athletes, it is possible to compute the angle of each joint and evaluate the ski run. Comparing the IMU data, firstly, with a video and then proposing them to an expert coach, it is possible to observe from the data the same mistakes visible in the camera. The aim of this work is to find a tool to support ski coaches during training sessions. Since the evaluation of athletes is now mainly developed with the support of video, we evaluate the use of IMUs to support the evaluation of the coach with more precise data.


Assuntos
Esqui , Atletas , Fenômenos Biomecânicos , Humanos , Movimento , Projetos Piloto
2.
Sensors (Basel) ; 18(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748507

RESUMO

There is a growing interest in Nordic walking both from the fitness and medical point of views due to its possible therapeutic applications. The proper execution of the technique is an essential requirement to maximize the benefits of this practice. This is the reason why a monitoring system for outdoor Nordic walking activity was developed. Using data obtained from synchronized sensors, it is possible to have a complete overview of the users' movements. The system described in this paper is able to measure: the pole angle during the pushing phase, the arms cycle frequency and synchronization and the pushing force applied to the ground. Furthermore, data from a GPS module give an image of the environment where the activity session takes place, in terms of the distance, slope, as well as the ground typology. A heart rate sensor is used to monitor the effort of the user through his/her Beats Per Minute (BPM). In this work, the developed monitoring system is presented, explaining how to use the gathered data to obtain the main feedback parameters for Nordic walking performance analysis. The comparison between left and right arm measurements allowed validating the system as a tool for technique evaluation. Finally, a procedure to estimate the peak pushing force from acceleration measurements is proposed.


Assuntos
Sistemas Microeletromecânicos/métodos , Caminhada/fisiologia , Acelerometria , Algoritmos , Processamento Eletrônico de Dados , Sistemas de Informação Geográfica , Frequência Cardíaca/fisiologia , Humanos , Sistemas Microeletromecânicos/instrumentação
3.
Sensors (Basel) ; 10(1): 456-74, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22315550

RESUMO

The diffusion of micro electro-mechanical systems (MEMS) technology applied to navigation systems is rapidly increasing, but currently, there is a lack of knowledge about the reliability of this typology of devices, representing a serious limitation to their use in aerospace vehicles and other fields with medium and high requirements. In this paper, a reliability testing procedure for inertial sensors and inertial measurement units (IMU) based on MEMS for applications in vibrating environments is presented. The sensing performances were evaluated in terms of signal accuracy, systematic errors, and accidental errors; the actual working conditions were simulated by means of an accelerated dynamic excitation. A commercial MEMS-based IMU was analyzed to validate the proposed procedure. The main weaknesses of the system have been localized by providing important information about the relationship between the reliability levels of the system and individual components.


Assuntos
Aceleração , Análise de Falha de Equipamento/instrumentação , Análise de Falha de Equipamento/métodos , Sistemas Microeletromecânicos/instrumentação , Transdutores , Desenho de Equipamento , Vibração
4.
Sensors (Basel) ; 8(2): 767-783, 2008 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-27879733

RESUMO

The dynamic characterization of a set of gold micro beams by electrostatic excitation in presence of residual stress gradient has been studied experimentally. A method to determine the micro-cantilever residual stress gradient by measuring the deflection and curvature and then identifying the residual stress model by means of frequency shift behaviour is presented. A comparison with different numerical FEM models and experimental results has been carried out, introducing in the model the residual stress of the structures, responsible for an initial upward curvature. Dynamic spectrum data are measured via optical interferometry and experimental frequency shift curves are obtained by increasing the dc voltage applied to the specimens. A good correspondence is pointed out between measures and numerical models so that the residual stress effect can be evaluated for different configurations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA