Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biophys J ; 120(18): 4115-4128, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34370995

RESUMO

Empirically, α-helical membrane protein folding stability in surfactant micelles can be tuned by varying the mole fraction MFSDS of anionic (sodium dodecyl sulfate (SDS)) relative to nonionic (e.g., dodecyl maltoside (DDM)) surfactant, but we lack a satisfying physical explanation of this phenomenon. Cysteine labeling (CL) has thus far only been used to study the topology of membrane proteins, not their stability or folding behavior. Here, we use CL to investigate membrane protein folding in mixed DDM-SDS micelles. Labeling kinetics of the intramembrane protease GlpG are consistent with simple two-state unfolding-and-exchange rates for seven single-Cys GlpG variants over most of the explored MFSDS range, along with exchange from the native state at low MFSDS (which inconveniently precludes measurement of unfolding kinetics under native conditions). However, for two mutants, labeling rates decline with MFSDS at 0-0.2 MFSDS (i.e., native conditions). Thus, an increase in MFSDS seems to be a protective factor for these two positions, but not for the five others. We propose different scenarios to explain this and find the most plausible ones to involve preferential binding of SDS monomers to the site of CL (based on computational simulations) along with changes in size and shape of the mixed micelle with changing MFSDS (based on SAXS studies). These nonlinear impacts on protein stability highlights a multifaceted role for SDS in membrane protein denaturation, involving both direct interactions of monomeric SDS and changes in micelle size and shape along with the general effects on protein stability of changes in micelle composition.


Assuntos
Proteínas de Membrana , Micelas , Cisteína , Cinética , Desnaturação Proteica , Espalhamento a Baixo Ângulo , Dodecilsulfato de Sódio , Difração de Raios X
2.
J Neurochem ; 137(1): 101-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26756738

RESUMO

Nearly 200 mutations in the gene coding for presenilin 1 (PSEN1) cause early-onset Alzheimer's disease, yet the molecular mechanism remains obscure. As a meta-analysis, we compiled available clinical and biochemical data for PSEN1 variants and correlated these to chemical properties of the mutants. We found statistically significant relationships between relative Aß42 levels and clinical age of onset. We then computed chemical properties of the mutants from a variety of computational chemistry tools. Relative Aß42 levels correlated significantly (95% confidence or more from p-values of linear regression) with loss of hydrophobicity for four different regression analyses (squared correlation coefficient of linear regression R(2) of 0.41-0.53) and with increased polarity (R(2) = 0.47, 0.59) and loss of protein stability (R(2) = 0.39, 0.63) for two independent data sets. Age of onset of patients carrying PSEN1 variants correlated with increased polarity (R(2) = 0.49, 0.40) and loss of stability (R(2) = 0.75, 0.44) of the protein for both data sets. These relations suggest that mutants impair the membrane-associated structural integrity of presenilin by reducing hydrophobic membrane association and overall protein stability. This explains why the many mutations that spread out across the protein and far from the catalytic aspartates can cause disease. The identified molecular determinants of clinical age of symptom onset may be relevant to future presenilin-modulating therapies specifically directed towards increasing the structural integrity and packing of the protein. Close to 200 mutations in presenilin 1 (PSEN1) cause Alzheimer's disease, but the biochemical relating these to disease remains debated. The chemical properties of PSEN1 variants were computed and correlated against clinical age of symptom onset. Loss of stability and hydrophobicity and gain of polarity relate to disease onset, suggesting that mutants impair the membrane structure of PSEN1 and that therapies should increase PSEN1 structural integrity.


Assuntos
Doença de Alzheimer/genética , Presenilina-1/genética , Adulto , Idade de Início , Idoso , Doença de Alzheimer/epidemiologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/análise , Domínio Catalítico , Biologia Computacional/métodos , Conjuntos de Dados como Assunto , Genes Dominantes , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fragmentos de Peptídeos/análise , Mutação Puntual , Presenilina-1/química , Conformação Proteica , Estabilidade Proteica , Análise de Regressão
3.
Neurobiol Dis ; 89: 147-56, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26852951

RESUMO

There is no molecular explanation for the many presenilin 1 (PSEN1) mutations causing Alzheimer's disease, but both gain of function relating to amyloid production and loss of isolated PSEN1 function have been implied. We report here the first detailed dynamic all-atom model of mature PSEN1 from molecular dynamics in an explicit membrane with particular account of the as yet unexplored loop dynamics. We find that mature PSEN1 contains multiple distinct conformational states whereas non-mature PSEN1 is a typical one-state protein. We confirm a previously suggested gating mechanism, and find that the 106-131 loop acts as a "hinge" for the TM2 and TM6 "doors". More importantly, we identify an unplugging mechanism of the Exon 9 loop associated only with mature PSEN1. Proper opening of both the "gate" and "plug" in the membrane produces channel-like morphologies and access to the catalytic aspartates. Dynamically, these features seem linked. The long-range sensitivity of this gate-plug system to subtle conformational changes can explain why so many PSEN1 mutants cause disease. Reduced access and imprecise substrate cleavage associated with impaired gate-plug dynamics is directly illustrated by the effect of maturation in our work and could explain the overall reduction in Aß levels upon PSEN1 mutation and the increase in the Aß 42/40 ratio. Yet, our PSEN1-only dynamics are particularly insightful in revealing PSEN1-only dynamics relating to e.g. its role as membrane channel. Thus, our identified gate-plug mechanism is relevant for designing PSEN1 modulating therapies for treatment of Alzheimer's disease within both the amyloid/γ-secretase hypothesis and within the PSEN1 loss of function paradigm.


Assuntos
Doença de Alzheimer/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Presenilina-1/química , Presenilina-1/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos
4.
J Immunol ; 193(1): 295-305, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24907344

RESUMO

The cell wall of Mycobacterium tuberculosis is configured of bioactive lipid classes that are essential for virulence and potentially involved in the formation of foamy macrophages (FMs) and granulomas. Our recent work established crosstalk between M. tuberculosis cell wall lipids and the host lipid-sensing nuclear receptor TR4. In this study, we have characterized, identified, and adopted a heterologous ligand keto-mycolic acid from among M. tuberculosis lipid repertoire for the host orphan NR TR4. Crosstalk between cell wall lipids and TR4 was analyzed by transactivation and promoter reporter assays. Mycolic acid (MA) was found to transactivate TR4 significantly compared with other cell wall lipids. Among the MA, the oxygenated form, keto-MA, was responsible for transactivation, and the identity was validated by TR4 binding assays followed by TLC and nuclear magnetic resonance. Isothermal titration calorimetry revealed that keto-MA binding to TR4 is energetically favorable. This keto-MA-TR4 axis seems to be essential to this oxygenated MA induction of FMs and granuloma formation as evaluated by in vitro and in vivo model of granuloma formation. TR4 binding with keto-MA features a unique association of host nuclear receptor with a bacterial lipid and adds to the presently known ligand repertoire beyond dietary lipids. Pharmacologic modulation of this heterologous axis may hold promise as an adjunct therapy to frontline tuberculosis drugs.


Assuntos
Células Espumosas/imunologia , Granuloma/imunologia , Mycobacterium tuberculosis/imunologia , Ácidos Micólicos/imunologia , Receptores de Esteroides/imunologia , Receptores dos Hormônios Tireóideos/imunologia , Ativação Transcricional/imunologia , Tuberculose/imunologia , Células Espumosas/patologia , Granuloma/patologia , Humanos , Mycobacterium tuberculosis/química , Ácidos Micólicos/química , Ácidos Micólicos/farmacologia , Ativação Transcricional/efeitos dos fármacos , Tuberculose/patologia
5.
Chemphyschem ; 16(15): 3278-89, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26256268

RESUMO

We studied the dynamics of Aß40 , involved in Alzheimer's disease, by using 21 methods combined from Amber03, Amber99sb-ILDN, Charmm27, Charmm22*, OPLS-2001, OPLS-2006, OPLS-2008, Gromos96-43a1, Gromos96-53a6, Gromos96-54a7, and the water models SPC, TIP3P, TIP4P. Major differences in the structural ensembles were systematized: Amber03, Charmm27, and Gromos96-54a7 stabilize the helices; Gromos96-43a1 and Gromos53a6 favor the ß-strands (with Charmm22* and Amber99sb-ILDN in between), and OPLS produces unstructured ensembles. The accuracy of the NMR chemical shifts was in the order: Charmm22*>Amber99sb-ILDN>OPLS-2008≈Gromos96-43a1>Gromos96-54a7≈OPLS-2001>OPLS-2006>Gromos96-53a6>Charmm27>Amber03. The computed (3) JHNHα -coupling constants were sensitive to experiment type and Karplus parameterization. Overall, the ensembles of Charmm22* and Amber99sb-ILDN provided the best agreement with experimental NMR and circular dichroism data, providing a model for the real Aß monomer ensemble. Also, the polar water model TIP3P significantly favored helix and compact conformations.


Assuntos
Peptídeos beta-Amiloides/química , Modelos Químicos , Água/química
6.
BMC Struct Biol ; 14: 9, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24618394

RESUMO

BACKGROUND: High-throughput mass spectrometric (HT-MS) study is the method of choice for monitoring global changes in proteome. Data derived from these studies are meant for further validation and experimentation to discover novel biological insights. Here we evaluate use of relative solvent accessible surface area (rSASA) and DEPTH as indices to assess experimentally determined phosphorylation events deposited in PhosphoSitePlus. RESULTS: Based on accessibility, we map these identifications on allowed (accessible) or disallowed (inaccessible) regions of phosphoconformation. Surprisingly a striking number of HT-MS/MS derived events (1461/5947 sites or 24.6%) are present in the disallowed region of conformation. By considering protein dynamics, autophosphorylation events and/or the sequence specificity of kinases, 13.8% of these phosphosites can be moved to the allowed region of conformation. We also demonstrate that rSASA values can be used to increase the confidence of identification of phosphorylation sites within an ambiguous MS dataset. CONCLUSION: While MS is a stand-alone technique for the identification of vast majority of phosphorylation events, identifications within disallowed region of conformation will benefit from techniques that independently probe for phosphorylation and protein dynamics. Our studies also imply that trapping alternate protein conformations may be a viable alternative to the design of inhibitors against mutation prone drug resistance kinases.


Assuntos
Fosfoproteínas/química , Conformação Proteica , Proteoma/química , Animais , Biologia Computacional , Bases de Dados Genéticas , Humanos , Espectrometria de Massas , Modelos Moleculares , Fosforilação , Estrutura Secundária de Proteína
7.
J Phys Chem B ; 128(2): 451-464, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38190651

RESUMO

It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other ß-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Ligação Proteica , Sítios de Ligação
8.
Chem Sci ; 14(11): 3030-3047, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937574

RESUMO

Small soluble oligomers of the protein α-synuclein (αSO) have been linked to disruptions in neuronal homeostasis, contributing to the development of Parkinson's Disease (PD). While this makes αSO an obvious drug target, the development of effective therapeutics against αSO is challenged by its low abundance and structural and morphological complexity. Here, we employ two different approaches to neutralize toxic interactions made by αSOs with different cellular components. First, we use available data to identify four neuronal proteins as likely candidates for αSO interactions, namely Cfl1, Uchl1, Sirt2 and SerRS. However, despite promising results when immobilized, all 4 proteins only bind weakly to αSO in solution in microfluidic assays, making them inappropriate for screening. In contrast, the formation of stable contacts formed between αSO and vesicles consisting of anionic lipids not only mimics a likely biological role of αSO but also provided a platform to screen two small molecule libraries for disruptors of these contacts. Of the 7 best leads obtained in this way, 2 significantly impaired αSO contacts with other proteins in a sandwich ELISA assay using αSO-binding monoclonal antibodies and nanobodies. In addition, 5 of these leads suppressed α-synuclein amyloid formation. Thus, a repurposing screening that directly targets a key culprit in PD pathogenesis shows therapeutic potential.

9.
Commun Biol ; 5(1): 123, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145226

RESUMO

Aggregation of the 140-residue protein α-synuclein (αSN) is a key factor in the etiology of Parkinson's disease. Although the intensely anionic C-terminal domain (CTD) of αSN does not form part of the amyloid core region or affect membrane binding ability, truncation or reduction of charges in the CTD promotes fibrillation through as yet unknown mechanisms. Here, we study stepwise truncated CTDs and identify a threshold region around residue 121; constructs shorter than this dramatically increase their fibrillation tendency. Remarkably, these effects persist even when as little as 10% of the truncated variant is mixed with the full-length protein. Increased fibrillation can be explained by a substantial increase in self-replication, most likely via fragmentation. Paradoxically, truncation also suppresses toxic oligomer formation, and oligomers that can be formed by chemical modification show reduced membrane affinity and cytotoxicity. These remarkable changes correlate to the loss of negative electrostatic potential in the CTD and highlight a double-edged electrostatic safety guard.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Humanos , Membranas/metabolismo , Doença de Parkinson/metabolismo , Eletricidade Estática , alfa-Sinucleína/metabolismo
10.
FEBS J ; 287(10): 2037-2054, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31686426

RESUMO

While it is generally accepted that α-synuclein oligomers (αSOs) play an important role in neurodegeneration in Parkinson's disease, the basis for their cytotoxicity remains unclear. We have previously shown that docosahexaenoic acid (DHA) stabilizes αSOs against dissociation without compromising their ability to colocalize with glutamatergic synapses of primary hippocampal neurons, suggesting that they bind to synaptic proteins. Here, we develop a proteomic screen for putative αSO binding partners in rat primary neurons using DHA-stabilized human αSOs as a bait protein. The protocol involved co-immunoprecipitation in combination with a photoactivatable heterobifunctional sulfo-LC-SDA crosslinker which did not compromise neuronal binding and preserved the interaction between the αSOs-binding partners. We identify in total 29 proteins associated with DHA-αSO of which eleven are membrane proteins, including synaptobrevin-2B (VAMP-2B), the sodium-potassium pump (Na+ /K+ ATPase), the V-type ATPase, the voltage-dependent anion channel and calcium-/calmodulin-dependent protein kinase type II subunit gamma; only these five hits were also found in previous studies which used unmodified αSOs as bait. We also identified Rab-3A as a target with likely disease relevance. Three out of four selected hits were subsequently validated with dot-blot binding assays. In addition, likely binding sites on these ligands were identified by computational analysis, highlighting a diversity of possible interactions between αSOs and target proteins. These results constitute an important step in the search for disease-modifying treatments targeting toxic αSOs.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Doença de Parkinson/genética , Proteômica , alfa-Sinucleína/química , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Humanos , Degeneração Neural/genética , Neurônios/química , Neurônios/efeitos dos fármacos , Doença de Parkinson/patologia , Ligação Proteica/genética , Proteoma/genética , Ratos , Sinapses/genética , Sinapses/ultraestrutura , alfa-Sinucleína/genética
11.
ACS Chem Neurosci ; 8(11): 2424-2436, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28841371

RESUMO

γ-Secretase produces ß-amyloid (Aß) within its presenilin (PS1) subunit, mutations in which cause Alzheimer's disease, and current therapies thus seek to modulate its activity. While the general structure is known from recent electron microscopy studies, direct loop and membrane interactions and explicit dynamics relevant to substrate processing remain unknown. We report a modeled structure utilizing the optimal multitemplate information available, including loops and missing side chains, account of maturation cleavage, and explicit all-atom molecular dynamics in the membrane. We observe three distinct conformations of γ-secretase (open, semiopen, and closed) that remarkably differ by tilting of helices 2 and 3 of PS1, directly controlling active site availability. The large hydrophilic loop of PS1 where maturation occurs reveals a new helix segment that parallels the likely helix character of other substrates. The semiopen conformation consistently shows the best fit of Aß peptides, that is, longer residence before release and by inference more trimming. In contrast, the closed, hydrophobic conformation is largely inactive and the open conformation is active but provides fewer optimal interactions and induces shorter residence time and by inference releases Aß peptides of longer lengths. Our simulations thus provide a molecular basis for substrate processing and changes in the Aß42/Aß40 ratio. Accordingly, selective binding to protect the semiopen "innocent" conformation provides a molecular recipe for effective γ-secretase modulators; we provide the full atomic structures for these states that may play a key role in developing selective γ-secretase modulators for treatment of Alzheimer's disease.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Desenho de Fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Proteínas de Membrana/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Presenilina-1/química , Análise de Componente Principal , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Subunidades Proteicas , Especificidade por Substrato
12.
ACS Chem Neurosci ; 6(12): 1990-6, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26447342

RESUMO

We report a systematic analysis of conformational ensembles generated from multiseed molecular dynamics simulations of all 15 known genetic variants of Aß42. We show that experimentally determined variant toxicities are largely explained by random coil content of the amyloid ensembles (correlation with smaller EC50 values; R(2) = 0.54, p = 0.01), and to some extent the helix character (more helix-character is less toxic, R(2) = 0.32, p = 0.07) and hydrophobic surface (R(2) = 0.37, p = 0.04). Our findings suggest that qualitative structural features of the amyloids, rather than the quantitative levels, are fundamentally related to neurodegeneration. The data provide molecular explanations for the high toxicity of E22 variants and for the protective features of the recently characterized A2T variant. The identified conformational features, for example, the local helix-coil-strand transitions of the C-terminals of the peptides, are of likely interest in the direct targeting of amyloids by rational drug design.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Mutação/genética , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
13.
Artigo em Inglês | MEDLINE | ID: mdl-26637529

RESUMO

Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11,000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/.


Assuntos
Bases de Dados de Proteínas , Descoberta de Drogas , Receptores Nucleares Órfãos/metabolismo , Análise por Conglomerados , Mineração de Dados , Inflamação/metabolismo , Armazenamento e Recuperação da Informação , Internet , Ligantes , Receptores X do Fígado , PPAR gama/metabolismo , Xenobióticos/química , Xenobióticos/metabolismo
14.
FEBS Lett ; 588(1): 71-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269678

RESUMO

14-3-3 Proteins bind phosphorylated sequences in proteins and regulate multiple cellular functions. For the first time, we show that pure recombinant human 14-3-3 ζ, γ, ε and τ isofoms hydrolyze ATP with similar Km and kcat values. In sharp contrast the sigma isoform has no detectable activity. Docking studies identify two putative binding pockets in 14-3-3 zeta. Mutation of D124A in the amphipathic pocket enhances binding affinity and catalysis. Mutation of a critical Arg (R55A) at the dimer interface in zeta reduces binding and decreases catalysis. These experimental results coincide with a binding pose at the dimer interface. This newly identified function could be a moon lighting function in some of these isoforms.


Assuntos
Proteínas 14-3-3/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Western Blotting , Humanos , Hidrólise , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA