Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36833347

RESUMO

Natural antioxidants derived from plants exert various physiological effects, including antitumor effects. However, the molecular mechanisms of each natural antioxidant have not yet been fully elucidated. Identifying the targets of natural antioxidants with antitumor properties in vitro is costly and time-consuming, and the results thus obtained may not reliably reflect in vivo conditions. Therefore, to enhance understanding regarding the antitumor effects of natural antioxidants, we focused on DNA, one of the targets of anticancer drugs, and evaluated whether antioxidants, e.g., sulforaphane, resveratrol, quercetin, kaempferol, and genistein, which exert antitumor effects, induce DNA damage using gene-knockout cell lines derived from human Nalm-6 and HeLa cells pretreated with the DNA-dependent protein kinase inhibitor NU7026. Our results suggested that sulforaphane induces single-strand breaks or DNA strand crosslinks and that quercetin induces double-strand breaks. In contrast, resveratrol showed the ability to exert cytotoxic effects other than DNA damage. Our results also suggested that kaempferol and genistein induce DNA damage via unknown mechanisms. Taken together, the use of this evaluation system facilitates the analysis of the cytotoxic mechanisms of natural antioxidants.


Assuntos
Antioxidantes , Quebras de DNA de Cadeia Dupla , Humanos , Antioxidantes/farmacologia , Quempferóis , Resveratrol , Quercetina , Células HeLa , Genisteína , DNA
2.
FEBS J ; 290(22): 5313-5321, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530740

RESUMO

Arsenic is a carcinogen that can cause skin, lung, and bladder cancer. While DNA double-strand breaks (DSBs) have been implicated in arsenic-induced carcinogenesis, the exact mechanism remains unclear. In this study, we performed genetic analysis to examine the impact of arsenic trioxide (As2 O3 ) on four different DSB repair pathways using the human pre-B cell line Nalm-6. Random integration analysis showed that As2 O3 does not negatively affect non-homologous end joining or polymerase theta-mediated end joining. In contrast, chromosomal DSB repair analysis revealed that As2 O3 decreases the efficiency of homologous recombination (HR) and, less prominently, single-strand annealing. Consistent with this finding, As2 O3 decreased gene-targeting efficiency, owing to a significant reduction in the frequency of HR-mediated targeted integration. To further verify the inhibitory effect of arsenic on HR, we examined cellular sensitivity to olaparib and camptothecin, which induce one-ended DSBs requiring HR for precise repair. Intriguingly, we found that As2 O3 significantly enhances sensitivity to those anticancer agents in HR-proficient cells. Our results suggest that arsenic-induced genomic instability is attributed to HR suppression, providing valuable insights into arsenic-associated carcinogenesis and therapeutic options.


Assuntos
Arsênio , Quebras de DNA de Cadeia Dupla , Humanos , Reparo do DNA , Recombinação Homóloga , Reparo do DNA por Junção de Extremidades , DNA , Carcinogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA