Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463299

RESUMO

Sirtuin 1 (SIRT1) othologs are ubiquitous NAD⁺-dependent deacetylases that act as nutrient sensors and modulate metabolism and stress responses in diverse organisms. Both mammalian SIRT1 and Caenorhabditis elegans SIR-2.1 have been implicated in dietary restriction, longevity, and healthspan. Hsp90 is an evolutionarily conserved molecular chaperone that stabilizes a plethora of signaling 'client' proteins and regulates fundamental biological processes. Here we report that Hsp90 is required for conformational stabilization of SIRT1 and SIR-2.1. We find that inhibition of Hsp90 by geldanamycin (GA) induces the depletion of mammalian SIRT1 protein in a concentration and time dependent manner in COS-7 and HepG2 cells. In contrast to SIRT1, SIRT2 level remains unchanged by GA treatment, reflecting a specific Hsp90 SIRT1 interaction. Hsp90 inhibition leads to the destabilization and proteasomal degradation of SIRT1. Moreover, we observe a GA-sensitive physical interaction between SIRT1 and Hsp90 by immunoprecipitation. We also demonstrate that hsp-90 gene silencing also induces SIR-2.1 protein depletion and proteasomal degradation in C. elegans. Our findings identify metazoan SIRT1 orthologs as Hsp90 clients and reveal a novel crosstalk between the proteostasis and nutrient signaling networks, which may have implications in various age related diseases.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mamíferos/metabolismo , Sirtuína 1/metabolismo , Animais , Benzoquinonas/farmacologia , Células COS , Chlorocebus aethiops , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Células Hep G2 , Humanos , Lactamas Macrocíclicas/farmacologia , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica , Proteólise/efeitos dos fármacos
2.
Nature ; 477(7365): 482-5, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21938067

RESUMO

Overexpression of sirtuins (NAD(+)-dependent protein deacetylases) has been reported to increase lifespan in budding yeast (Saccharomyces cerevisiae), Caenorhabditis elegans and Drosophila melanogaster. Studies of the effects of genes on ageing are vulnerable to confounding effects of genetic background. Here we re-examined the reported effects of sirtuin overexpression on ageing and found that standardization of genetic background and the use of appropriate controls abolished the apparent effects in both C. elegans and Drosophila. In C. elegans, outcrossing of a line with high-level sir-2.1 overexpression abrogated the longevity increase, but did not abrogate sir-2.1 overexpression. Instead, longevity co-segregated with a second-site mutation affecting sensory neurons. Outcrossing of a line with low-copy-number sir-2.1 overexpression also abrogated longevity. A Drosophila strain with ubiquitous overexpression of dSir2 using the UAS-GAL4 system was long-lived relative to wild-type controls, as previously reported, but was not long-lived relative to the appropriate transgenic controls, and nor was a new line with stronger overexpression of dSir2. These findings underscore the importance of controlling for genetic background and for the mutagenic effects of transgene insertions in studies of genetic effects on lifespan. The life-extending effect of dietary restriction on ageing in Drosophila has also been reported to be dSir2 dependent. We found that dietary restriction increased fly lifespan independently of dSir2. Our findings do not rule out a role for sirtuins in determination of metazoan lifespan, but they do cast doubt on the robustness of the previously reported effects of sirtuins on lifespan in C. elegans and Drosophila.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Histona Desacetilases/genética , Longevidade/fisiologia , Sirtuínas/genética , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Restrição Calórica , Cruzamentos Genéticos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica , Histona Desacetilases/metabolismo , Longevidade/genética , Masculino , RNA Mensageiro/análise , RNA Mensageiro/genética , Sirtuínas/metabolismo
3.
Commun Biol ; 6(1): 936, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704756

RESUMO

Lysosome-related organelles (LROs) play diverse roles and their dysfunction causes immunodeficiency. However, their primordial functions remain unclear. Here, we report that C. elegans LROs (gut granules) promote organismal defenses against various stresses. We find that toxic benzaldehyde exposure induces LRO autofluorescence, stimulates the expression of LRO-specific genes and enhances LRO transport capacity as well as increases tolerance to benzaldehyde, heat and oxidative stresses, while these responses are impaired in glo-1/Rab32 and pgp-2 ABC transporter LRO biogenesis mutants. Benzaldehyde upregulates glo-1- and pgp-2-dependent expression of heat shock, detoxification and antimicrobial effector genes, which requires daf-16/FOXO and/or pmk-1/p38MAPK. Finally, benzaldehyde preconditioning increases resistance against Pseudomonas aeruginosa PA14 in a glo-1- and pgp-2-dependent manner, and PA14 infection leads to the deposition of fluorescent metabolites in LROs and induction of LRO genes. Our study suggests that LROs may play a role in systemic responses to stresses and in pathogen resistance.


Assuntos
Benzaldeídos , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Lisossomos , Imunidade
4.
Cells ; 11(16)2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-36010556

RESUMO

Assuring a healthy proteome is indispensable for survival and organismal health. Proteome disbalance and the loss of the proteostasis buffer are hallmarks of various diseases. The essential molecular chaperone Hsp90 is a regulator of the heat shock response via HSF1 and a stabilizer of a plethora of signaling proteins. In this review, we summarize the role of Hsp90 in the cellular and organismal regulation of proteome maintenance.


Assuntos
Proteoma , Proteostase , Proteínas de Choque Térmico HSP90/metabolismo , Resposta ao Choque Térmico , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo
5.
Ageing Res Rev ; 67: 101271, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571701

RESUMO

While the elderly segment of the population continues growing in importance, neurodegenerative diseases increase exponentially. Lifestyle factors such as nutrition, exercise, and education, among others, influence ageing progression, throughout life. Notably, the Central Nervous System (CNS) can benefit from nutritional strategies and dietary interventions that prevent signs of senescence, such as cognitive decline or neurodegenerative diseases such as Alzheimer's disease and Parkinson's Disease. The dietary polyphenol Resveratrol (RV) possesses antioxidant and cytoprotective effects, producing neuroprotection in several organisms. The oxidative stress (OS) occurs because of Reactive oxygen species (ROS) accumulation that has been proposed to explain the cause of the ageing. One of the most harmful effects of ROS in the cell is DNA damage. Nevertheless, there is also evidence demonstrating that OS can produce other molecular changes such as mitochondrial dysfunction, inflammation, apoptosis, and epigenetic modifications, among others. Interestingly, the dietary polyphenol RV is a potent antioxidant and possesses pleiotropic actions, exerting its activity through various molecular pathways. In addition, recent evidence has shown that RV mediates epigenetic changes involved in ageing and the function of the CNS that persists across generations. Furthermore, it has been demonstrated that RV interacts with gut microbiota, showing modifications in bacterial composition associated with beneficial effects. In this review, we give a comprehensive overview of the main mechanisms of action of RV in different experimental models, including clinical trials and discuss how the interconnection of these molecular events could explain the neuroprotective effects induced by RV.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Idoso , Doença de Alzheimer/tratamento farmacológico , Antioxidantes/farmacologia , Epigênese Genética , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Resveratrol/farmacologia
6.
Sci Rep ; 8(1): 12048, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104664

RESUMO

The FOXO transcription factor family is a conserved regulator of longevity and the downstream target of insulin/insulin-like signaling. In Caenorhabditis elegans, the FOXO ortholog DAF-16A and D/F isoforms extend lifespan in daf-2 insulin-like receptor mutants. Here we identify the DAF-21/Hsp90 chaperone as a longevity regulator. We find that reducing DAF-21 capacity by daf-21(RNAi) initiated either at the beginning or at the end of larval development shortens wild-type lifespan. daf-21 knockdown employed from the beginning of larval development also decreases longevity of daf-2 mutant and daf-2 silenced nematodes. daf-16 loss-of-function mitigates the lifespan shortening effect of daf-21 silencing. We demonstrate that DAF-21 specifically promotes daf-2 and heat-shock induced nuclear translocation of DAF-16A as well as the induction of DAF-16A-specific mRNAs, without affecting DAF-16D/F localization and transcriptional function. DAF-21 is dispensable for the stability and nuclear import of DAF-16A, excluding a chaperone-client interaction and suggesting that DAF-21 regulates DAF-16A activation upstream of its cellular traffic. Finally, we show a selective requirement for DAF-21 to extend lifespan of DAF-16A, but not DAF-16D/F, transgenic daf-2 mutant strains. Our findings indicate a spatiotemporal determination of multiple DAF-21 roles in fertility, development and longevity and reveal an isoform-specific regulation of DAF-16 activity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Choque Térmico HSP90/genética , Longevidade/genética , Animais , Animais Geneticamente Modificados/genética , Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Resposta ao Choque Térmico/genética , Longevidade/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Transcrição Gênica/genética , Ativação Transcricional/genética
7.
Antioxid Redox Signal ; 17(6): 890-901, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22369044

RESUMO

UNLABELLED: Increased oxidative stress is associated with various diseases and aging, while adaptation to heat stress is an important determinant of survival and contributes to longevity. However, the impact of oxidative stress on heat resistance remains largely unclear. AIM: In this study we investigated how oxidative stress impinges on heat stress responses. RESULTS: We report that hydrogen-peroxide (H(2)O(2)) pretreatment inhibits both acquired thermotolerance and heat-induced Hsp70 expression in mammalian cells, as well as acquired thermotolerance in the nematode Caenorhabditis elegans, via RNA interference. Moreover, we demonstrate that elimination of RNA interference by silencing key enzymes in microRNA biogenesis, dcr-1 or pash-1, restores the diminished intrinsic thermotolerance of aged and H(2)O(2)-elimination compromised (catalase-2 and peroxiredoxin-2 deficient) worms. INNOVATION AND CONCLUSION: These results uncover a novel post-transcriptional element in the regulation of heat stress adaptation under oxidative conditions that may have implications in disease susceptibility and aging.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Interferência de RNA/fisiologia , Animais , Células COS , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Chlorocebus aethiops , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Peróxido de Hidrogênio/farmacologia , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA