Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Biol Chem ; 300(9): 107707, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178947

RESUMO

Chronic exposure to elevated levels of manganese (Mn) may cause a neurological disorder referred to as manganism. The transcription factor REST is dysregulated in several neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. REST upregulated tyrosine hydroxylase and induced protection against Mn toxicity in neuronal cultures. In the present study, we investigated if dopaminergic REST plays a critical role in protecting against Mn-induced toxicity in vivo using dopaminergic REST conditional knockout (REST-cKO) mice and REST loxP mice as wild-type (WT) controls. Restoration of REST in the substantia nigra (SN) with neuronal REST AAV vector infusion was performed to further support the role of REST in Mn toxicity. Mice were exposed to Mn (330 µg, intranasal, daily for 3 weeks), followed by behavioral tests and molecular biology experiments. Results showed that Mn decreased REST mRNA/protein levels in the SN-containing midbrain, as well as locomotor activity and motor coordination in WT mice, which were further decreased in REST-cKO mice. Mn-induced mitochondrial insults, such as impairment of fission/fusion and mitophagy, apoptosis, and oxidative stress, in the midbrain of WT mice were more pronounced in REST-cKO mice. However, REST restoration in the SN of REST-cKO mice attenuated Mn-induced neurotoxicity. REST's molecular target for its protection is unclear, but REST attenuated Mn-induced mitochondrial dysregulation, indicating that it is a primary intracellular target for both Mn and REST. These novel findings suggest that dopaminergic REST in the nigrostriatal pathway is critical in protecting against Mn toxicity, underscoring REST as a potential therapeutic target for treating manganism.

2.
J Biol Chem ; 299(7): 104879, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269951

RESUMO

Chronic manganese (Mn) exposure can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1ß, and TNF-α in the striatum and midbrain of WT mice, and these effects were more pronounced in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 µM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1ß, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was elevated further in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated G2019S-expressing BV2 microglia caused greater toxicity to the cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10 which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.


Assuntos
Intoxicação por Manganês , Manganês , Camundongos , Humanos , Animais , Manganês/metabolismo , Microglia/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Intoxicação por Manganês/metabolismo , Mutação , Autofagia
3.
Glia ; 71(2): 450-466, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36300569

RESUMO

The transcription factor Yin Yang 1 (YY1) is ubiquitously expressed in mammalian cells, regulating the expression of a variety of genes involved in proliferation, differentiation, and apoptosis in a context-dependent manner. While it is well-established that global YY1 knockout (KO) leads to embryonic death in mice and that YY1 deletion in neurons or oligodendrocytes induces impaired brain function, the role of astrocytic YY1 in the brain remains unknown. We investigated the role of astrocytic YY1 in the brain using a glial fibrillary acidic protein (GFAP)-specific YY1 conditional KO (YY1 cKO) mouse model to delete astrocytic YY1. Astrocytic YY1 cKO mice were tested for behavioral phenotypes, such as locomotor activity, coordination, and cognition, followed by an assessment of relevant biological pathways using RNA-sequencing analysis, immunoblotting, and immunohistochemistry in the cortex, midbrain, and cerebellum. YY1 cKO mice showed abnormal phenotypes, movement deficits, and cognitive dysfunction. At the molecular level, astrocytic YY1 deletion altered the expression of genes associated with proliferation and differentiation, p53/caspase apoptotic pathways, oxidative stress response, and inflammatory signaling including NF-κB, STAT, and IRF in all regions. Astrocytic YY1 deletion significantly increased the expression of GFAP as astrocytic activation and Iba1 as microglial activation, indicating astrocytic YY1 deletion activated microglia as well. Accordingly, multiple inflammatory cytokines and chemokines including TNF-α and CXCL10 were elevated. Combined, these novel findings suggest that astrocytic YY1 is a critical transcription factor for normal brain development and locomotor activity, motor coordination, and cognition. Astrocytic YY1 is also essential in preventing pathological oxidative stress, apoptosis, and inflammation.


Assuntos
Fator de Transcrição YY1 , Yin-Yang , Camundongos , Animais , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Apoptose , Inflamação , Estresse Oxidativo , Encéfalo/metabolismo , Mamíferos/metabolismo
4.
J Biol Chem ; 297(6): 101372, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756885

RESUMO

Chronic exposure to high levels of manganese (Mn) leads to manganism, a neurological disorder with similar symptoms to those inherent to Parkinson's disease. However, the underlying mechanisms of this pathological condition have yet to be established. Since the human excitatory amino acid transporter 2 (EAAT2) (glutamate transporter 1 in rodents) is predominantly expressed in astrocytes and its dysregulation is involved in Mn-induced excitotoxic neuronal injury, characterization of the mechanisms that mediate the Mn-induced impairment in EAAT2 function is crucial for the development of novel therapeutics against Mn neurotoxicity. Repressor element 1-silencing transcription factor (REST) exerts protective effects in many neurodegenerative diseases. But the effects of REST on EAAT2 expression and ensuing neuroprotection are unknown. Given that the EAAT2 promoter contains REST binding sites, the present study investigated the role of REST in EAAT2 expression at the transcriptional level in astrocytes and Mn-induced neurotoxicity in an astrocyte-neuron coculture system. The results reveal that astrocytic REST positively regulates EAAT2 expression with the recruitment of an epigenetic modifier, cAMP response element-binding protein-binding protein/p300, to its consensus binding sites in the EAAT2 promoter. Moreover, astrocytic overexpression of REST attenuates Mn-induced reduction in EAAT2 expression, leading to attenuation of glutamate-induced neurotoxicity in the astrocyte-neuron coculture system. Our findings demonstrate that astrocytic REST plays a critical role in protection against Mn-induced neurotoxicity by attenuating Mn-induced EAAT2 repression and the ensuing excitotoxic dopaminergic neuronal injury. This indicates that astrocytic REST could be a potential molecular target for the treatment of Mn toxicity and other neurological disorders associated with EAAT2 dysregulation.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Manganês/farmacologia , Proteínas Repressoras/fisiologia , Regulação para Cima/fisiologia , Animais , Astrócitos/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Transcrição Gênica/fisiologia
5.
Glia ; 70(10): 1886-1901, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35638297

RESUMO

Chronic manganese (Mn) overexposure causes a neurological disorder, referred to as manganism, exhibiting symptoms similar to parkinsonism. Dysfunction of the repressor element-1 silencing transcription factor (REST) is associated with various neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Mn-induced neurotoxicity, but its cellular and molecular mechanisms have yet to be fully characterized. Although neuronal REST is known to be neuroprotective, the role of astrocytic REST in neuroprotection remains to be established. We investigated if astrocytic REST in the striatal region of the mouse brain where Mn preferentially accumulates plays a role in Mn-induced neurotoxicity. Striatal astrocytic REST was deleted by infusion of adeno-associated viral vectors containing sequences of the glial fibrillary acidic protein promoter-driven Cre recombinase into the striatum of RESTflox/flox mice for 3 weeks, followed by Mn exposure (30 mg/kg, daily, intranasally) for another 3 weeks. Striatal astrocytic REST deletion exacerbated Mn-induced impairment of locomotor activity and cognitive function with further decrease in Mn-reduced protein levels of tyrosine hydroxylase and glutamate transporter 1 (GLT-1) in the striatum. Astrocytic REST deletion also exacerbated the Mn-induced proinflammatory mediator COX-2, as well as cytokines such as TNF-α, IL-1ß, and IL-6, in the striatum. Mn-induced detrimental astrocytic products such as proinflammatory cytokines on neuronal toxicity were attenuated by astrocytic REST overexpression, but exacerbated by REST inhibition in an in vitro model using primary human astrocytes and Lund human mesencephalic (LUHMES) neuronal culture. These findings indicate that astrocytic REST plays a critical role against Mn-induced neurotoxicity by modulating astrocytic proinflammatory factors and GLT-1.


Assuntos
Astrócitos , Intoxicação por Manganês , Proteínas Repressoras , Animais , Astrócitos/metabolismo , Deleção de Genes , Humanos , Manganês/toxicidade , Intoxicação por Manganês/genética , Camundongos , Proteínas Repressoras/genética
6.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012586

RESUMO

Triple-negative breast cancer (TNBC) is aggressive and has a poor overall survival due to a lack of therapeutic targets compared to other subtypes. Chemokine signature revealed that TNBC had low levels of CXCL14, an orphan homeostatic chemokine to regulate the immune network. Here, we investigated if CXCL14 plays a critical role in TNBC progression, focusing on survival rates, tumor growth and metastasis, and immune profiles in the tumor microenvironment. Analysis of human breast-cancer datasets showed that low CXCL14 expression levels were associated with poor survival rates in patients with breast cancer, particularly for TNBC subtypes. Overexpression of CXCL14 in TNBC 4T1 orthotopic mouse model significantly reduced tumor weights and inhibited lung metastasis. Furthermore, the CXCL14 overexpression altered immune profiles in the tumor microenvironment as follows: decreased F4/80+ macrophages and CD4+CD25+ Treg cells, and increased CD8+T cells in primary tumors; decreased Ly6C+ myeloid cells and CD4+CD25+ Treg cells and increased CD4+ and CD8+T cells in lung metastatic tumors. CXCL14-induced reduction of tumor growth and metastasis was diminished in T cell-deficient nude mice. Taken together, our data demonstrate that CXCL14 inhibits TNBC progression through altering immune profiles in the tumor microenvironment and it is mediated in a T cell-dependent manner. Thus, CXCL14 could be used as a biomarker for prognosis.


Assuntos
Linfócitos T CD8-Positivos , Quimiocinas CXC , Linfócitos T Reguladores , Neoplasias de Mama Triplo Negativas , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Linfócitos T Reguladores/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
7.
J Biol Chem ; 295(10): 3040-3054, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32001620

RESUMO

Dopaminergic functions are important for various biological activities, and their impairment leads to neurodegeneration, a hallmark of Parkinson's disease (PD). Chronic manganese (Mn) exposure causes the neurological disorder manganism, presenting symptoms similar to those of PD. Emerging evidence has linked the transcription factor RE1-silencing transcription factor (REST) to PD and also Alzheimer's disease. But REST's role in dopaminergic neurons is unclear. Here, we investigated whether REST protects dopaminergic neurons against Mn-induced toxicity and enhances expression of the dopamine-synthesizing enzyme tyrosine hydroxylase (TH). We report that REST binds to RE1 consensus sites in the TH gene promoter, stimulates TH transcription, and increases TH mRNA and protein levels in dopaminergic cells. REST binding to the TH promoter recruited the epigenetic modifier cAMP-response element-binding protein-binding protein/p300 and thereby up-regulated TH expression. REST relieved Mn-induced repression of TH promoter activity, mRNA, and protein levels and also reduced Mn-induced oxidative stress, inflammation, and apoptosis in dopaminergic neurons. REST reduced Mn-induced proinflammatory cytokines, including tumor necrosis factor α, interleukin 1ß (IL-1ß), IL-6, and interferon γ. Moreover, REST inhibited the Mn-induced proapoptotic proteins Bcl-2-associated X protein (Bax) and death-associated protein 6 (Daxx) and attenuated an Mn-induced decrease in the antiapoptotic proteins Bcl-2 and Bcl-xL. REST also enhanced the expression of antioxidant proteins, including catalase, NF-E2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Our findings indicate that REST activates TH expression and thereby protects neurons against Mn-induced toxicity and neurological disorders associated with dopaminergic neurodegeneration.


Assuntos
Manganês/toxicidade , Proteínas Repressoras/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Proteína de Ligação a CREB/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Heme Oxigenase-1/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Repressoras/genética , Ativação Transcricional , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/genética
8.
J Biol Chem ; 295(46): 15662-15676, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32893191

RESUMO

Manganese (Mn)-induced neurotoxicity resembles Parkinson's disease (PD), but the mechanisms underpinning its effects remain unknown. Mn dysregulates astrocytic glutamate transporters, GLT-1 and GLAST, and dopaminergic function, including tyrosine hydroxylase (TH). Our previous in vitro studies have shown that Mn repressed GLAST and GLT-1 via activation of transcription factor Yin Yang 1 (YY1). Here, we investigated if in vivo astrocytic YY1 deletion mitigates Mn-induced dopaminergic neurotoxicity, attenuating Mn-induced reduction in GLAST/GLT-1 expression in murine substantia nigra (SN). AAV5-GFAP-Cre-GFP particles were infused into the SN of 8-week-old YY1 flox/flox mice to generate a region-specific astrocytic YY1 conditional knockout (cKO) mouse model. 3 weeks after adeno-associated viral (AAV) infusion, mice were exposed to 330 µg of Mn (MnCl2 30 mg/kg, intranasal instillation, daily) for 3 weeks. After Mn exposure, motor functions were determined in open-field and rotarod tests, followed by Western blotting, quantitative PCR, and immunohistochemistry to assess YY1, TH, GLAST, and GLT-1 levels. Infusion of AAV5-GFAP-Cre-GFP vectors into the SN resulted in region-specific astrocytic YY1 deletion and attenuation of Mn-induced impairment of motor functions, reduction of TH-expressing cells in SN, and TH mRNA/protein levels in midbrain/striatum. Astrocytic YY1 deletion also attenuated the Mn-induced decrease in GLAST/GLT-1 mRNA/protein levels in midbrain. Moreover, YY1 deletion abrogated its interaction with histone deacetylases in astrocytes. These results indicate that astrocytic YY1 plays a critical role in Mn-induced neurotoxicity in vivo, at least in part, by reducing astrocytic GLAST/GLT-1. Thus, YY1 might be a potential target for treatment of Mn toxicity and other neurological disorders associated with dysregulation of GLAST/GLT-1.


Assuntos
Intoxicação por Manganês/patologia , Substância Negra/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cloretos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Histona Desacetilases/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Compostos de Manganês , Intoxicação por Manganês/metabolismo , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Fator de Transcrição YY1/genética
9.
J Biol Chem ; 290(39): 23725-37, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26269591

RESUMO

Astrocytic glutamate transporter excitatory amino acid transporter (EAAT) 1, also known as glutamate aspartate transporter (GLAST) in rodents, is one of two glial glutamate transporters that are responsible for removing excess glutamate from synaptic clefts to prevent excitotoxic neuronal death. Despite its important role in neurophysiological functions, the molecular mechanisms of EAAT1 regulation at the transcriptional level remain to be established. Here, we report that NF-κB is a main positive transcription factor for EAAT1, supported by the following: 1) EAAT1 contains two consensus sites for NF-κB, 2) mutation of NF-κB binding sites decreased EAAT1 promoter activity, and 3) activation of NF-κB increased, whereas inhibition of NF-κB decreased EAAT1 promoter activity and mRNA/protein levels. EGF increased EAAT1 mRNA/protein levels and glutamate uptake via NF-κB. The transcription factor yin yang 1 (YY1) plays a role as a critical negative regulator of EAAT1, supported by the following: 1) the EAAT1 promoter contains multiple consensus sites for YY1, 2) overexpression of YY1 decreased EAAT1 promoter activity and mRNA/protein levels, and 3) knockdown of YY1 increased EAAT1 promoter activity and mRNA/protein levels. Manganese decreased EAAT1 expression via YY1. Epigenetic modifiers histone deacetylases (HDACs) served as co-repressors of YY1 to further decrease EAAT1 promoter activity, whereas inhibition of HDACs reversed manganese-induced decrease of EAAT1 expression. Taken together, our findings suggest that NF-κB is a critical positive regulator of EAAT1, mediating the stimulatory effects of EGF, whereas YY1 is a negative regulator of EAAT1 with HDACs as co-repressors, mediating the inhibitory effects of manganese on EAAT1 regulation.


Assuntos
Astrócitos/metabolismo , Epigênese Genética/fisiologia , Transportador 1 de Aminoácido Excitatório/biossíntese , NF-kappa B/metabolismo , Transcrição Gênica/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Manganês/metabolismo , Manganês/farmacologia , Ratos , Ratos Sprague-Dawley , Elementos de Resposta/fisiologia , Transcrição Gênica/efeitos dos fármacos
10.
J Biol Chem ; 288(40): 28975-86, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23955341

RESUMO

Tamoxifen (TX), a selective estrogen receptor modulator, exerts antagonistic effects on breast tissue and is used to treat breast cancer. Recent evidence also suggests that it may act as an agonist in brain tissue. We reported previously that TX enhanced the expression and function of glutamate transporter 1 (GLT-1) in rat astrocytes, an effect that was mediated by TGF-α. To gain further insight into the mechanisms that mediate TX-induced up-regulation of GLT-1 (EAAT2 in humans), we investigated its effect on GLT-1 at the transcriptional level. TX phosphorylated the cAMP response element-binding protein (CREB) and recruited CREB to the GLT-1 promoter consensus site. The effect of TX on astrocytic GLT-1 was attenuated by the inhibition of PKA, the upstream activator of the CREB pathway. In addition, the effect of TX on GLT-1 promoter activity was abolished by the inhibition of the NF-κB pathway. Furthermore, TX recruited the NF-κB subunits p65 and p50 to the NF-κB binding domain of the GLT-1 promoter. Mutation of NF-κB (triple, -583/-282/-251) or CRE (-308) sites on the GLT-1 promoter led to significant repression of the promoter activity, but neither mutant completely abolished the TX-induced GLT-1 promoter activity. Mutation of both the NF-κB (-583/-282/-251) and CRE (-308) sites led to a complete abrogation of the effect of TX on GLT-1 promoter activity. Taken together, our findings establish that TX regulates GLT-1 via the CREB and NF-κB pathways.


Assuntos
Astrócitos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , NF-kappa B/metabolismo , Tamoxifeno/farmacologia , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Sítios de Ligação , Extratos Celulares , Células Cultivadas , Imunoprecipitação da Cromatina , Transportador 2 de Aminoácido Excitatório/metabolismo , Humanos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Elementos de Resposta/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador alfa/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
11.
Glia ; 62(8): 1270-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24782323

RESUMO

Raloxifene (RX), a selective estrogen receptor modulator (SERM), exerts neuroprotection in multiple clinical and experimental settings. Astrocytic glutamate transporters GLT-1 (EAAT2) and GLAST (EAAT1) are the main glutamate transporters in the central nervous system, taking up most of excess glutamate from the synaptic cleft to prevent excitotoxic neuronal death. Since drugs targeting astrocytic glutamate transporters to enhance their expression and function represent potential therapeutics for neurodegenerative disorders associated with excitotoxicity, we tested if RX modulates the expression and function of GLT-1 and GLAST in rat primary astrocytes. The results showed that RX significantly increased glutamate uptake and expression of GLT-1 mRNA and protein levels. RX enhanced GLT-1 expression by the activation of multiple signaling pathways including ERK, EGFR, and CREB mediated by estrogen receptors (ERs) ER-α, ER-ß, and GPR30. At the transcriptional level, NF-κB played a critical role in RX-induced GLT-1 expression as RX increased NF-κB reporter activity and induced binding of NF-κB p65 and p50 to the GLT-1 promoter. RX attenuated the reduction of GLT-1 expression and glutamate uptake induced by manganese (Mn) whose chronic high levels of exposure cause manganism. RX also upregulated GLAST by increasing its promoter activity and protein levels via the NF-κB pathway and ERs. Our findings provide new insight into the mechanism of RX-induced enhancement of GLT-1 and GLAST expression, as well as the attenuation of Mn-reduced expression of these transporters. These findings will be highly valuable for developing therapeutics of neurodegenerative diseases associated with impaired astrocytic glutamate transporters.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Cloridrato de Raloxifeno/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores ErbB/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
PLoS One ; 19(3): e0300095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427617

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0210248.].

13.
Nutrients ; 16(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38999849

RESUMO

Obesity is associated with one-fifth of cancer deaths, and breast cancer is one of the obesity-related cancers. Triple-negative breast cancer (TNBC) lacks estrogen and progesterone receptors and human epidermal growth factor receptor 2, leading to the absence of these therapeutic targets, followed by poor overall survival. We investigated if obesity could hasten TNBC progression and intermittent fasting (IF) could attenuate the progression of obesity-related TNBC. Our meta-analysis of the TNBC outcomes literature showed that obesity led to poorer overall survival in TNBC patients. Fasting-mimicking media reduced cell proliferation disrupted the cell cycle, and decreased cell migration and invasion. IF decreased body weight in obese mice but no change in normal mice. Obese mice exhibited elevated plasma glucose and cholesterol levels, increased tumor volume and weight, and enhanced macrophage accumulation in tumors. The obesity-exacerbated TNBC progression was attenuated after IF, which decreased cyclin B1 and vimentin levels and reduced the proinflammatory signature in the obesity-associated tumor microenvironment. IF attenuated obesity-induced TNBC progression through reduced obesity and tumor burdens in cell and animal experiments, supporting the potential of a cost-effective adjuvant IF therapy for TNBC through lifestyle change. Further evidence is needed of these IF benefits in TNBC, including from human clinical trials.


Assuntos
Ciclo Celular , Progressão da Doença , Transição Epitelial-Mesenquimal , Jejum , Obesidade , Neoplasias de Mama Triplo Negativas , Animais , Obesidade/complicações , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Inflamação , Proliferação de Células , Microambiente Tumoral , Camundongos Obesos , Movimento Celular , Jejum Intermitente
14.
Neurotoxicology ; 103: 105-114, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38857675

RESUMO

Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, presenting symptoms similar to those of Parkinson's disease (PD), yet the mechanisms by which Mn induces its neurotoxicity are not completely understood. 17ß-estradiol (E2) affords neuroprotection against Mn toxicity in various neural cell types including microglia. Our previous studies have shown that leucine-rich repeat kinase 2 (LRRK2) mediates Mn-induced inflammatory toxicity in microglia. The LRRK2 promoter sequences contain three putative binding sites of the transcription factor (TF), specificity protein 1 (Sp1), which increases LRRK2 promoter activity. In the present study, we tested if the Sp1-LRRK2 pathway plays a role in both Mn toxicity and the protection afforded by E2 against Mn toxicity in BV2 microglial cells. The results showed that Mn induced cytotoxicity, oxidative stress, and tumor necrosis factor-α production, which were attenuated by an LRRK2 inhibitor, GSK2578215A. The overexpression of Sp1 increased LRRK2 promoter activity, mRNA and protein levels, while inhibition of Sp1 with its pharmacological inhibitor, mithramycin A, attenuated the Mn-induced increases in LRRK2 expression. Furthermore, E2 attenuated the Mn-induced Sp1 expression by decreasing the expression of Sp1 via the promotion of the ubiquitin-dependent degradation pathway, which was accompanied by increased protein levels of RING finger protein 4, the E3-ligase of Sp1, Sp1 ubiquitination, and SUMOylation. Taken together, our novel findings suggest that Sp1 serves as a critical TF in Mn-induced LRRK2 expression as well as in the protection afforded by E2 against Mn toxicity through reduction of LRRK2 expression in microglia.


Assuntos
Estradiol , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Microglia , Fator de Transcrição Sp1 , Regulação para Cima , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Fator de Transcrição Sp1/metabolismo , Estradiol/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Regulação para Cima/efeitos dos fármacos , Camundongos , Manganês/toxicidade , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
15.
J Biol Chem ; 287(32): 26817-28, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22645130

RESUMO

The G protein-coupled estrogen receptor GPR30 contributes to the neuroprotective effects of 17ß-estradiol (E2); however, the mechanisms associated with this protection have yet to be elucidated. Given that E2 increases astrocytic expression of glutamate transporter-1 (GLT-1), which would prevent excitotoxic-induced neuronal death, we proposed that GPR30 mediates E2 action on GLT-1 expression. To investigate this hypothesis, we examined the effects of G1, a selective agonist of GPR30, and GPR30 siRNA on astrocytic GLT-1 expression, as well as glutamate uptake in rat primary astrocytes, and explored potential signaling pathways linking GPR30 to GLT-1. G1 increased GLT-1 protein and mRNA levels, subject to regulation by both MAPK and PI3K signaling. Inhibition of TGF-α receptor suppressed the G1-induced increase in GLT-1 expression. Silencing GPR30 reduced the expression of both GLT-1 and TGF-α and abrogated the G1-induced increase in GLT-1 expression. Moreover, the G1-induced increase in GLT-1 protein expression was abolished by a protein kinase A inhibitor and an NF-κB inhibitor. G1 also enhanced cAMP response element-binding protein (CREB), as well as both NF-κB p50 and NF-κB p65 binding to the GLT-1 promoter. Finally, to model dysfunction of glutamate transporters, manganese was used, and G1 was found to attenuate manganese-induced impairment in GLT-1 protein expression and glutamate uptake. Taken together, the present data demonstrate that activation of GPR30 increases GLT-1 expression via multiple pathways, suggesting that GPR30 is worthwhile as a potential target to be explored for developing therapeutics of excitotoxic neuronal injury.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Primers do DNA , Inativação Gênica , Imuno-Histoquímica , Reação em Cadeia da Polimerase , Proteínas Quinases/metabolismo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética
16.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066140

RESUMO

Chronic exposure to manganese (Mn) can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice, and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1ß and TNF-α in the striatum and midbrain of WT mice, and these effects were exacerbated in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 µM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1ß, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was exacerbated in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated BV2 microglia expressing G2019S caused greater toxicity to cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10, which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway, and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.

17.
Glia ; 60(7): 1024-36, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22488924

RESUMO

Glutamate transporter-1 (GLT-1) plays a central role in preventing excitotoxicity by removing excess glutamate from the synaptic clefts. 17ß-Estradiol (E2) and tamoxifen (TX), a selective estrogen receptor (ER) modulator, afford neuroprotection in a range of experimental models. However, the mechanisms that mediate E2 and TX neuroprotection have yet to be elucidated. We tested the hypothesis that E2 and TX enhance GLT-1 function by increasing transforming growth factor (TGF)-α expression and, thus, attenuate manganese (Mn)-induced impairment in astrocytic GLT-1 expression and glutamate uptake in rat neonatal primary astrocytes. The results showed that E2 (10 nM) and TX (1 µM) increased GLT-1 expression and reversed the Mn-induced reduction in GLT-1, both at the mRNA and protein levels. E2/TX also concomitantly reversed the Mn-induced inhibition of astrocytic glutamate uptake. E2/TX activated the GLT-1 promoter and attenuated the Mn-induced repression of the GLT-1 promoter in astrocytes. TGF-α knockdown (siRNA) abolished the E2/TX effect on GLT-1 expression, and inhibition of epidermal growth factor receptor (TGF-α receptor) suppressed the effect of E2/TX on GLT-1 expression and GLT-1 promoter activity. E2/TX also increased TGF-α mRNA and protein levels with a concomitant increase in astrocytic glutamate uptake. All ERs (ER-α, ER-ß, and G protein-coupled receptor 30) were involved in mediating E2 effects on the regulation of TGF-α, GLT-1, and glutamate uptake. These results indicate that E2/TX increases GLT-1 expression in astrocytes via TGF-α signaling, thus offering an important putative target for the development of novel therapeutics for neurological disorders.


Assuntos
Astrócitos/efeitos dos fármacos , Estradiol/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Ratos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Fator de Crescimento Transformador alfa/genética , Regulação para Cima/fisiologia
18.
Toxicol Lett ; 355: 41-46, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34800614

RESUMO

Impairment of the astrocytic glutamate transporter excitatory amino acid transporter 2 (EAAT2) is associated with neurological disorders such as Parkinson's disease (PD), Alzheimer's disease (AD), and manganism, a neurological disorder caused by overexposure to manganese (Mn) which shares the features of sporadic PD. Mechanisms of Mn-induced neurotoxicity include dysregulation of EAAT2 following activation of the transcription factor Yin Yang 1 (YY1) by transcriptional upregulation, but the posttranslational mechanisms by which YY1 is activated to repress EAAT2 remain to be elucidated. In the present study, we tested if Mn activates YY1 through posttranslational phosphorylation in cultured H4 human astrocytes, leading to EAAT2 repression. The results demonstrate that Mn exposure induced phosphorylation of YY1 at serine residues via kinases Aurora B kinase (AurkB) and Casein kinase II (CK2), leading to YY1 nuclear translocation, YY1/HDAC interactions, binding to the EAAT2 promoter, and consequent decreases in EAAT2 promoter activity and mRNA/protein levels. Although further studies are warranted to fully elucidate the mechanisms of Mn-induced YY1 phosphorylation and resultant EAAT2 impairment, our findings indicate that serine phosphorylation of YY1 via AurkB and CK2 is critical, at least in part, to its activation and transcriptional repression of EAAT2.


Assuntos
Astrócitos/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Manganês/farmacologia , Fator de Transcrição YY1/metabolismo , Sequência de Aminoácidos , Astrócitos/metabolismo , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Linhagem Celular , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Humanos , Fosforilação , Serina/química , Fator de Transcrição YY1/genética
19.
Neurotoxicology ; 86: 94-103, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310962

RESUMO

Dysregulation of the astrocytic glutamate transporter excitatory amino acid transporter 2 (EAAT2) is associated with several neurological disorders, including Parkinson's disease, Alzheimer's disease, and manganism, the latter induced by chronic exposure to high levels of manganese (Mn). Mechanisms of Mn-induced neurotoxicity include impairment of EAAT2 function secondary to the activation of the transcription factor Yin Yang 1 (YY1) by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). However, the upstream mechanisms by which Mn-induced NF-κB activates YY1 remain to be elucidated. In the present study, we used the H4 human astrocyte cell line to test if Mn activates YY1 through the canonical NF-κB signaling pathway, leading to EAAT2 repression. The results demonstrate that Mn exposure induced phosphorylation of the upstream kinase IκB kinase (IKK-ß), leading to NF-κB p65 translocation, increased YY1 promoter activity, mRNA/protein levels, and consequently repressed EAAT2. Results also demonstrated that Mn-induced oxidative stress and subsequent TNF-α production were upstream of IKK-ß activation, as antioxidants attenuated Mn-induced TNF-α production and IKK-ß activation. Moreover, TNF-α inhibition attenuated the Mn-induced activation of IKK-ß and YY1. Taken together, Mn-induced oxidative stress and TNF-α mediates activation of NF-κB signaling and YY1 upregulation, leading to repression of EAAT2. Thus, targeting reactive oxygen species (ROS), TNF-α and IKK-ß may attenuate Mn-induced YY1 activation and consequent EAAT2 repression.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/biossíntese , Quinase I-kappa B/metabolismo , Manganês/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição YY1/biossíntese , Astrócitos/efeitos dos fármacos , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
20.
Cancers (Basel) ; 13(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34638514

RESUMO

Obesity contributes to ovarian cancer (OC) progression via tumorigenic chemokines. Adipocytes and OC cells highly express CXCR2, and its ligands CXCL1/8, respectively, indicating that the CXCL1/8-CXCR2 axis is a molecular link between obesity and OC. Here, we investigated how the adipocyte-specific CXCR2 conditional knockout (cKO) affected the peritoneal tumor microenvironment of OC in a high-fat diet (HFD)-induced obese mouse model. We first generated adipocyte-specific CXCR2 cKO in mice: adipose tissues were not different in crown-like structures and adipocyte size between the wild-type (WT) and cKO mice but expressed lower levels of CCL2/6 compared to the obese WT mice. HFD-induced obese mice had a shorter survival time than lean mice. Particularly, obese WT and cKO mice developed higher tumors and ascites burdens, respectively. The ascites from the obese cKO mice showed increased vacuole clumps but decreased the floating tumor burden, tumor-attached macrophages, triglyceride, free fatty acid, CCL2, and TNF levels compared to obese WT mice. A tumor analysis revealed that obese cKO mice attenuated inflammatory areas, PCNA, and F4/80 compared to obese WT mice, indicating a reduced tumor burden, and there were positive relationships between the ascites and tumor parameters. Taken together, the adipocyte-specific CXCR2 cKO was associated with obesity-induced ascites despite a reduced tumor burden, likely altering the peritoneal tumor microenvironment of OC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA