Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Ind Microbiol Biotechnol ; 47(1): 97-108, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31758412

RESUMO

Several microorganisms can produce 2,3-butanediol (BDO), an industrially promising chemical. In this study, a Bacillus licheniformis named as 4071, was isolated from soil sample. It is a GRAS (generally recognized as safe) strain and could over-produce 2,3-BDO. Due to its mucoid forming characteristics, UV-random mutagenesis was carried out to obtain a mucoid-free strain, 4071-15. As a result, capabilities of 4071-15 strain in terms of transformation efficiency of bacillus plasmids (pC194, pUB110, and pUCB129) and fermentation performance were highly upgraded compared to those of the parent strain. In particular, 4071-15 strain could produce 123 g/L of 2,3-BDO in a fed-batch fermentation in which the ratio of (2R,3S)- to (2R,3R)-form isomers was 1:1. To increase the selectivity of (2R,3R)-BDO, budC gene was deleted by using temperature-sensitive gene deletion process via homologous recombination. The 4071-15 △budC mutant strain dramatically increased selectivity of (2R,3R)-BDO to 91% [96.3 g/L of (2R,3R)-BDO and 9.33 g/L of (2R,3S)-BDO], which was 43% higher than that obtained by the parent strain. This study has shown the potential of an isolate for 2,3-BDO production, and that the ratio of 2,3-BDO can be controlled by genetic engineering depending on its industrial usage.


Assuntos
Bacillus licheniformis/metabolismo , Butileno Glicóis/metabolismo , Bacillus licheniformis/genética , Bacillus licheniformis/isolamento & purificação , Fermentação , Engenharia Metabólica , Mutação , Filogenia
2.
J Ind Microbiol Biotechnol ; 46(11): 1583-1601, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31468234

RESUMO

2,3-Butanediol (2,3-BD) has great potential for diverse industries, including chemical, cosmetics, agriculture, and pharmaceutical areas. However, its industrial production and usage are limited by the fairly high cost of its petro-based production. Several bio-based 2,3-BD production processes have been developed and their economic advantages over petro-based production process have been reported. In particular, many 2,3-BD-producing microorganisms including bacteria and yeast have been isolated and metabolically engineered for efficient production of 2,3-BD. In addition, several fermentation processes have been tested using feedstocks such as starch, sugar, glycerol, and even lignocellulose as raw materials. Since separation and purification of 2,3-BD from fermentation broth account for the majority of its production cost, cost-effective processes have been simultaneously developed. The construction of a demonstration plant that can annually produce around 300 tons of 2,3-BD is scheduled to be mechanically completed in Korea in 2019. In this paper, core technologies for bio-based 2,3-BD production are reviewed and their potentials for use in the commercial sector are discussed.


Assuntos
Bactérias/metabolismo , Butileno Glicóis/metabolismo , Fermentação , Glicerol/metabolismo , Lignina/metabolismo , Engenharia Metabólica
3.
Metab Eng ; 30: 121-129, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26057003

RESUMO

A novel metabolic pathway was designed for the production of 3-aminopropionic acid (3-AP), an important platform chemical for manufacturing acrylamide and acrylonitrile. Using a fumaric acid producing Escherichia coli strain as a host, the Corynebacterium glutamicum panD gene (encoding L-aspartate-α-decarboxylase) was overexpressed and the native promoter of the aspA gene was replaced with the strong trc promoter, which allowed aspartic acid production through the aspartase-catalyzed reaction. Additional overexpression of aspA and ppc genes, and supplementation of ammonium sulfate in the medium allowed production of 3.49 g/L 3-AP. The 3-AP titer was further increased to 3.94 g/L by optimizing the expression level of PPC using synthetic promoters and RBS sequences. Finally, native promoter of the acs gene was replaced with strong trc promoter to reduce acetic acid accumulation. Fed-batch culture of the final strain allowed production of 32.3 g/L 3-AP in 39 h.


Assuntos
Proteínas de Bactérias/biossíntese , Corynebacterium glutamicum/genética , Escherichia coli , Expressão Gênica , Engenharia Metabólica/métodos , beta-Alanina/biossíntese , Proteínas de Bactérias/genética , Corynebacterium glutamicum/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , beta-Alanina/genética
4.
Metab Eng ; 28: 223-239, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576747

RESUMO

Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples.


Assuntos
Ácido Láctico/análogos & derivados , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Ácido Láctico/biossíntese
5.
Appl Microbiol Biotechnol ; 99(20): 8455-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26194559

RESUMO

Fumaric acid is an important C4-dicarboxylic acid widely used in chemical, food, and pharmaceutical industries. Rational metabolic engineering together with flux optimization were performed for the development of an Escherichia coli strain capable of efficiently producing fumaric acid. The initial engineered strain, CWF4N overexpressing phosphoenolpyruvate carboxylase (PPC), produced 5.30 g/L of fumaric acid. Optimization of PPC flux by examining 24 types of synthetic PPC expression vectors further increased the titer up to 5.72 g/L with a yield of 0.432 g/g·glucose. Overexpression of the succinate dehydrogenase complex (sdhCDAB) led to an increase in carbon yield up to 0.493 g/g·glucose. Based on this mutant strain, citrate synthase (CS) was combinatorially overexpressed and balanced with PPC using 48 types of synthetic expression vectors. As a result, 6.24 g/L of fumaric acid was produced with a yield of 0.500 g/g·glucose. Fed-batch culture of this final strain allowed production of 25.5 g/L of fumaric acid with a yield of 0.366 g/g·glucose. Deletion of the aspA gene encoding aspartase and supplementation of aspartic acid further increased the fumaric acid titer to 35.1 g/L with a yield of 0.490 g/g·glucose.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Fumaratos/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Deleção de Genes , Expressão Gênica , Vetores Genéticos , Glucose/metabolismo
6.
Biotechnol Bioeng ; 110(7): 2025-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23436277

RESUMO

Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid-based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L-aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed-batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli.


Assuntos
Biotecnologia/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Fumaratos/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Aerobiose , Escherichia coli/fisiologia , Deleção de Genes , Expressão Gênica , Vetores Genéticos , Glucose/metabolismo , Análise do Fluxo Metabólico , Plasmídeos , Regiões Promotoras Genéticas
7.
Biotechnol Bioeng ; 109(10): 2437-59, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22766912

RESUMO

Platform chemicals composed of 2-6 carbons derived from fossil resources are used as important precursors for making a variety of chemicals and materials, including solvents, fuels, polymers, pharmaceuticals, perfumes, and foods. Due to concerns regarding our environment and the limited nature of fossil resources, however, increasing interest has focused on the development of sustainable technologies for producing these platform chemicals from renewable resources. The techniques and strategies for developing microbial strains for chemicals production have advanced rapidly, and it is becoming feasible to develop microbes for producing additional types of chemicals, including non-natural molecules. In this study, we review the current status of the bio-based production of major C2-C6 platform chemicals, focusing on the microbial production of platform chemicals that have been used for the production of chemical intermediates, building block compounds, and polymers.


Assuntos
Bactérias/metabolismo , Biotecnologia/métodos , Compostos Orgânicos/metabolismo , Redes e Vias Metabólicas
8.
Front Microbiol ; 13: 914589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910601

RESUMO

Bacterial wilt caused by Ralstonia solanacearum is a fatal disease that affects the production of tomatoes and many other crops worldwide. As an effective strategy to manage bacterial wilt, biological control agents using plant growth-promoting rhizobacteria (PGPR) are being developed. In this study, we screened 2,3-butanediol (BDO)-producing PGPR to control tomato bacterial wilt and investigated the action mechanism of the disease control agent. Of the 943 strains isolated from soil, Klebsiella pneumoniae strain JCK-2201 produced the highest concentration of 2,3-BDO. The culture broth of K. pneumoniae JCK-2201 did not show any direct activity on R. solanacearum in vitro, but a 100-fold dilution effectively controlled tomato bacterial wilt with a control value of 77% in vivo. Fermentation utilizing K. pneumoniae JCK-2201 was optimized to produce 48 g/L of meso-2,3-BDO, which is 50% of the sucrose conversion efficiency. In addition, the control efficacy and mechanism of meso-2,3-BDO produced by JCK-2201 in tomato bacterial wilt were determined by comparative analysis with Bacillus licheniformis DSM13 producing meso-2,3-BDO and B. licheniformis DSM13 ΔalsS that did not produce 2,3-BDO, as the step of converting pyruvate to α-acetolactate was omitted. Tomato seedlings treated with the K. pneumoniae JCK-2201 (500-fold dilution) and B. licheniformis DSM13 (100-fold dilution) culture broth produced meso-2,3-BDO that significantly reduced R. solanacearum-induced disease severity with control values of 55% and 63%, respectively. The formulated meso-2,3-BDO 9% soluble concentrate (SL; 1,000-fold dilution) showed 87% control against tomato bacterial wilt in the field condition. Klebsiella pneumoniae JCK-2201 and B. licheniformis DSM13 treatment induced the expression of plant defense marker genes, such as LePR1, LePR2, LePR5, LePR3, and PI-II, in the salicylic acid and jasmonic acid signaling pathways at 4 days after inoculation. These results show that 2,3-BDO-producing bacteria and 2,3-BDO are potential biological control agents that act through induction of resistance for controlling tomato bacterial wilt.

9.
Plant Pathol J ; 38(3): 182-193, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35678051

RESUMO

Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.

10.
J Microbiol Biotechnol ; 32(5): 582-593, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484968

RESUMO

Among abiotic stresses in plants, drought and chilling stresses reduce the supply of moisture to plant tissues, inhibit photosynthesis, and severely reduce plant growth and yield. Thus, the application of water stress-tolerant agents can be a useful strategy to maintain plant growth under abiotic stresses. This study assessed the effect of exogenous bio-based 2,3-butanediol (BDO) application on drought and chilling response in tomato and turfgrass, and expression levels of several plant signaling pathway-related gene transcripts. Bio-based 2,3-BDOs were formulated to levo-2,3-BDO 0.9% soluble concentrate (levo 0.9% SL) and meso-2,3-BDO 9% SL (meso 9% SL). Under drought and chilling stress conditions, the application of levo 0.9% SL in creeping bentgrass and meso 9% SL in tomato plants significantly reduced the deleterious effects of abiotic stresses. Interestingly, pretreatment with levo-2,3-BDO in creeping bentgrass and meso-2,3-BDO in tomato plants enhanced JA and SA signaling pathway-related gene transcript expression levels in different ways. In addition, all tomato plants treated with acibenzolar-S-methyl (as a positive control) withered completely under chilling stress, whereas 2,3-BDO-treated tomato plants exhibited excellent cold tolerance. According to our findings, bio-based 2,3-BDO isomers as sustainable water stress-tolerant agents, levo- and meso-2,3-BDOs, could enhance tolerance to drought and/or chilling stresses in various plants through somewhat different molecular activities without any side effects.


Assuntos
Solanum lycopersicum , Butileno Glicóis , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética
11.
Biotechnol Prog ; 37(1): e3072, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964665

RESUMO

Bacillus lichenformis is an industrially promising generally recognized as safe (GRAS) strain that can be used for the production of a valuable chemical, 2,3-butanediol (BDO). Conventional gene deletion vectors and/or methods are time-consuming and have poor efficiency. Therefore, clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 mediated homologous recombination was used to engineer a newly isolated and UV-mutagenized B. licheniformis 4071-15 strain. With the help of a CRISPR-Cas9 system, this one-step process could be used for the deletion of ldh gene within 4 days with high-efficiency exceeding 60%. In addition, the sequential deletion of target genes for engineering studies was evaluated, and it was confirmed that a triple mutant strain (ldh, dgp, and acoR) could be obtained by repeated one-step cycles. Furthermore, a practical metabolic engineering study was carried out using a CRISPR-Cas9 system for the stereospecific production of (2R,3S)-BDO. The predicted (2R,3R)-butanediol dehydrogenase encoded by the gdh gene was selected as a target for the production of (2R,3S)-BDO, and the mutant was successfully obtained. The results show that the stereospecific production of (2R,3S)-BDO was possible with the gdh deletion mutant, while the 4071-15 host strain still generated 26% of (2R,3R)-BDO. It was also shown that the 4071-15 Δgdh mutant could produce 115 g/L of (2R,3S)-BDO in 64 hr by two-stage fed-batch fermentation. This study has shown the efficient development of a (2R,3S)-BDO producing B. licheniformis strain based on CRISPR-Cas9 and fermentation technologies.


Assuntos
Bacillus licheniformis/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Butileno Glicóis/metabolismo , Bacillus licheniformis/genética , Bacillus licheniformis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Fermentação , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Engenharia Metabólica , Mutação
12.
ACS Synth Biol ; 9(5): 1150-1159, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243749

RESUMO

Acrylic acid (AA) is an important industrial chemical used for several applications including superabsorbent polymers and acrylate esters. Here, we report the development of a new biosynthetic pathway for the production of AA from glucose in metabolically engineered Escherichia coli through the ß-alanine (BA) route. The AA production pathway was partitioned into two modules: an AA forming downstream pathway and a BA forming upstream pathway. We first validated the operation of the downstream pathway in vitro and in vivo, and then constructed the downstream pathway by introducing efficient enzymes (Act, Acl2, and YciA) screened out of various microbial sources and optimizing the expression levels. For the direct fermentative production of AA from glucose, the downstream pathway was introduced into the BA producing E. coli strain. The resulting strain could successfully produce AA from glucose in flask cultivation. AA production was further enhanced by expressing the upstream genes (panD and aspA) under the constitutive BBa_J23100 promoter. Replacement of the native promoter of the acs gene with the BBa_J23100 promoter in the genome increased AA production to 55.7 mg/L in flask. Fed-batch fermentation of the final engineered strain allowed production of 237 mg/L of AA in 57.5 h, representing the highest AA titer reported to date.


Assuntos
Acrilatos/metabolismo , Vias Biossintéticas/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , beta-Alanina/metabolismo , Acrilatos/química , Aspartato Amônia-Liase/genética , Carboxiliases/genética , Escherichia coli/genética , Glucose/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Serina Endopeptidases/genética
13.
J Pain ; 9(2): 122-45, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18088561

RESUMO

UNLABELLED: This paper advances a psychophysiological systems view of pain in which physical injury, or wounding, generates a complex stress response that extends beyond the nervous system and contributes to the experience of pain. Through a common chemical language comprising neurotransmitters, peptides, endocannabinoids, cytokines, and hormones, an ensemble of interdependent nervous, endocrine, and immune processes operates in concert to cope with the injury. These processes act as a single agent and comprise a supersystem. Acute pain in its multiple dimensions, and the related symptoms that commonly occur with it, are products of the supersystem. Chronic pain can develop as a result of unusual stress. Social stressors can compound the stress resulting from a wound or act alone to dysregulate the supersystem. When the supersystem suffers dysregulation, health, function, and sense of well-being suffer. Some chronic pain conditions are the product of supersystem dysregulation. Individuals vary and are vulnerable to dysregulation and dysfunction in particular organ systems due to the unique interactions of genetic, epigenetic and environmental factors, as well as the past experiences that characterize each person. PERSPECTIVE: Acute tissue injury activates an ensemble of interdependent nervous, endocrine, and immune processes that operate in concert and comprise a supersystem. Some chronic pain conditions result from supersystem dysregulation. Individuals vary and are vulnerable to dysregulation due to the unique interactions of genetic, epigenetic, and environmental factors and past experiences that characterize each person. This perspective can potentially assist clinicians in assessing and managing chronic pain patients.


Assuntos
Neuroimunomodulação/fisiologia , Dor/fisiopatologia , Estresse Psicológico/psicologia , Doença Crônica , Humanos , Estresse Psicológico/fisiopatologia
14.
J Microbiol Biotechnol ; 28(3): 409-417, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29212290

RESUMO

Biologically produced 2,3-butanediol (2,3-BDO) has diverse industrial applications. In this study, schematic isolation and screening procedures were designed to obtain generally regarded as safe (GRAS) and efficient 2,3-BDO producers. Over 4,000 candidate strains were isolated by pretreatment and enrichment, and the isolated Bacillus strains were further screened by morphological, biochemical, and genomic analyses. The screened strains were then used to test the utilization of the most common carbon (glucose, xylose, fructose, sucrose) and nitrogen (yeast extract, corn steep liquor) sources for the economical production of 2,3-BDO. Two-stage fed-batch fermentation was finally carried out to enhance 2,3-BDO production. In consequence, a newly isolated Bacillus licheniformis GSC3102 strain produced 92.0 g/l of total 2,3-BDO with an overall productivity and yield of 1.40 g/l/h and 0.423 g/g glucose, respectively, using a cheap and abundant nitrogen source. These results strongly suggest that B. licheniformis, which is found widely in nature, can be used as a host strain for the industrial fermentative production of 2,3-BDO.


Assuntos
Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/metabolismo , Butileno Glicóis/metabolismo , Fermentação , Bacillus/crescimento & desenvolvimento , Bacillus licheniformis/metabolismo , Técnicas de Cultura Celular por Lotes , Carbono/metabolismo , Meios de Cultura/química , Genes Bacterianos/genética , Microbiologia Industrial , Nitrogênio/metabolismo , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , República da Coreia , Microbiologia do Solo
15.
ACS Synth Biol ; 5(11): 1256-1263, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-26925526

RESUMO

Escherichia coli was metabolically engineered to produce industrially important platform chemicals, 3-hydroxypropionic acid (3-HP) and malonic acid (MA), through the ß-alanine (BA) route. First, various combinations of downstream enzymes were screened and BA pyruvate transaminase (encoded by pa0132) from P. aeruginosa was selected to generate malonic semialdehyde (MSA) from BA. This platform strain was engineered by introducing E. coli MSA reductase (encoded by ydfG) to reduce MSA to 3-HP. Replacement of native promoter of the sdhC gene with the strong trc promoter in the genome increased 3-HP production to 3.69 g/L in flask culture. Introduction of E. coli semialdehyde dehydrogenase (encoded by yneI) into the platform strain resulted in the production of MA, and additional deletion of the ydfG gene increased MA production to 0.450 g/L in flask culture. Fed-batch cultures of final engineered strains resulted in the production of 31.1 g/L 3-HP or 3.60 g/L MA from glucose.


Assuntos
Escherichia coli/genética , Ácido Láctico/análogos & derivados , Malonatos/metabolismo , Engenharia Metabólica , beta-Alanina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Escherichia coli/enzimologia , Glucose/metabolismo , Ácido Láctico/biossíntese , Microrganismos Geneticamente Modificados/genética , Oxirredutases/metabolismo , Regiões Promotoras Genéticas
16.
Biotechnol J ; 10(1): 56-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25155412

RESUMO

In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen.


Assuntos
Bactérias/genética , Engenharia Genética/métodos , Genoma Bacteriano/genética , Sistemas CRISPR-Cas/genética , Engenharia Metabólica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
17.
Biotechnol J ; 8(7): 776-84, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23653342

RESUMO

Gene knockout experiments are frequently performed for both fundamental and applied biological research. We developed an integration helper plasmid-based knockout system for more efficient and rapid engineering of Escherichia coli. The integration helper plasmid, pCW611, contains two recombinases that are expressed in the reverse direction by two independent inducible systems. One is Red recombinase under the control of the arabinose-inducible system to induce a recombination event by using the linear gene knockout DNA fragment, while the other is Cre recombinase, which is controlled by the isopropyl ß-D-1-thiogalactopyranoside-inducible system to obtain markerless mutant strains. The time and effort required can be reduced with this system because iterative transformation and curing steps are not required. We could delete one target gene in three days by using pCW611. To verify the usefulness of this system, deletion experiments were performed to knock out four target genes individually (adhE, sfcA, frdABCD, and ackA) and two genes simultaneously for two cases (adhE-aspA and sfcA-aspA). Also, sequential deletion of four target genes (fumB, iclR, fumA, and fumC) was successfully performed to make a fumaric acid producing strain. This successfully developed and validated rapid and efficient gene manipulation system should be useful for the metabolic engineering of E. coli.


Assuntos
Escherichia coli/genética , Técnicas de Inativação de Genes/métodos , Genes Bacterianos , Engenharia Metabólica/métodos , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fumaratos/metabolismo , Marcadores Genéticos/genética , Plasmídeos/genética , Recombinases/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA