RESUMO
Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the Spodoptera genus. Comparative genomic analyses of Spodoptera species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist Spodoptera picta. CRISPR-Cas9 knockouts of the three main UGT gene clusters of Spodoptera frugiperda revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist S. frugiperda to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist Spodoptera species, Spodoptera picta, which specializes on Crinum plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in SpUGT33F34. Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.
Assuntos
Spodoptera , Animais , Spodoptera/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Especificidade de Hospedeiro/genética , Difosfato de Uridina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , FilogeniaRESUMO
Impaired clearance of beta-amyloid (Aß) is a primary cause of sporadic Alzheimer's disease (AD). Aß clearance in the periphery contributes to reducing brain Aß levels and preventing Alzheimer's disease pathogenesis. We show here that erythropoietin (EPO) increases phagocytic activity, levels of Aß-degrading enzymes, and Aß clearance in peripheral macrophages via PPARγ. Erythropoietin is also shown to suppress Aß-induced inflammatory responses. Deletion of EPO receptor in peripheral macrophages leads to increased peripheral and brain Aß levels and exacerbates Alzheimer's-associated brain pathologies and behavioral deficits in AD-model mice. Moreover, erythropoietin signaling is impaired in peripheral macrophages of old AD-model mice. Exogenous erythropoietin normalizes impaired EPO signaling and dysregulated functions of peripheral macrophages in old AD-model mice, promotes systemic Aß clearance, and alleviates disease progression. Erythropoietin treatment may represent a potential therapeutic approach for Alzheimer's disease.
Assuntos
Doença de Alzheimer , Eritropoetina , Animais , Camundongos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Encéfalo/metabolismo , Macrófagos/metabolismo , Camundongos Transgênicos , Modelos Animais de DoençasRESUMO
The parasite Plasmodium vivax preferentially invades human reticulocytes. Its merozoite surface protein 1 paralog (PvMSP1P), particularly the 19-kDa C-terminal region (PvMSP1P-19), has been shown to bind to reticulocytes, and this binding can be inhibited by antisera obtained by PvMSP1P-19 immunization. The molecular mechanism of interactions between PvMSP1P-19 and reticulocytes during P. vivax invasion, however, remains unclear. In this study, we analyzed the ability of MSP1P-19 to bind to different concentrations of reticulocytes and confirmed its reticulocyte preference. LC-MS analysis was used to identify two potential reticulocyte receptors, band3 and CD71, that interact with MSP1P-19. Both PvMSP1P-19 and its sister taxon Plasmodium cynomolgi MSP1P-19 were found to bind to the extracellular loop (loop 5) of band3, where the interaction of MSP1P-19 with band3 was chymotrypsin sensitive. Antibodies against band3-P5, CD71, and MSP1P-19 reduced the binding activity of PvMSP1P-19 and Plasmodium cynomolgi MSP1P-19 to reticulocytes, while MSP1P-19 proteins inhibited Plasmodium falciparum invasion in vitro in a concentration-dependent manner. To sum up, identification and characterization of the reticulocyte receptor is important for understanding the binding of reticulocytes by MSP1P-19.
Assuntos
Antígenos CD , Plasmodium vivax , Proteínas de Protozoários , Receptores da Transferrina , Reticulócitos , Plasmodium vivax/metabolismo , Plasmodium vivax/genética , Reticulócitos/metabolismo , Reticulócitos/parasitologia , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Antígenos CD/metabolismo , Antígenos CD/genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteína 1 de Troca de Ânion do Eritrócito/genética , Ligação Proteica , Proteína 1 de Superfície de Merozoito/metabolismo , Proteína 1 de Superfície de Merozoito/genética , Malária Vivax/parasitologia , Malária Vivax/metabolismo , AnimaisRESUMO
Osteoclast-mediated bone erosion and deformation represent significant pathological features in rheumatoid arthritis (RA). Myeloid-derived suppressor cells (MDSCs) and B cells have emerged as key contributors to the progression of RA. Nevertheless, their involvement, especially the interaction in RA osteoclastogenesis remains elusive. In this study, our results revealed a marked expansion of MDSCs in RA patients, and importantly, their abundance was positively correlated with radiographic damage evaluated by the Sharp/van der Heijde score. Notably, MDSCs derived from both RA patients and arthritic mice exhibited a heightened propensity to differentiate into osteoclasts compared with those from healthy individuals. Intriguingly, we observed that B cells from RA patients could augment the osteoclastogenic potential of MDSCs, which was also observed in arthritic mice. The impact of B cells on MDSC-mediated osteoclastogenesis was found to be most pronounced in switched memory B cells, followed by CD21low B cells and naïve B cells. MDSCs from B-cell-deficient mice exhibited diminished capacity to differentiate into osteoclasts, accompanied by distinct gene expression profiles associated with osteoclastogenesis. Taken together, our findings suggested that MDSCs were important osteoclast precursors primed by B cells in RA, serving as novel therapeutic targets for the persistent disease.
RESUMO
BACKGROUND: Rademikibart (CBP-201) is a next-generation IL-4 receptor alpha-targeting antibody. OBJECTIVE: We sought to evaluate rademikibart in adults with moderate to severe atopic dermatitis. METHODS: A total of 226 patients were randomized, double-blind, to subcutaneous rademikibart (300 mg every 2 weeks [Q2W], 150 mg Q2W, 300 mg every 4 weeks [Q4W]; plus 600-mg loading dose) or placebo. Randomization began in July 2020. The trial was completed in October 2021. RESULTS: The WW001 phase 2 trial achieved its primary end point: significant percent reduction from baseline in least-squares mean Eczema Area Severity Index (EASI) to week 16 with rademikibart 300 mg Q2W (-63.0%; P = .0007), 150 mg Q2W (-57.6%; P = .0067), 300 mg Q4W (-63.5%; P = .0004) versus placebo (-39.7%). EASI scores decreased significantly with 300 mg Q2W and Q4W at the earliest assessment (week 2), with no evidence of plateauing by week 16. Significant improvements were also observed in secondary end points, including pruritus. Across the primary and secondary end points, efficacy tended to be comparable with 300 mg Q2W and Q4W dosing. Rademikibart and placebo had similar, low incidence of treatment-emergent adverse events (TEAEs) (48% vs 54%), serious TEAEs (1.8% vs 3.6%), TEAEs leading to treatment discontinuation (1.2% vs 1.8%), conjunctivitis of unspecified cause (2.9% vs 0%), herpes (0.6% vs 1.8%), and injection-site reactions (1.8% vs 1.8%). Although no discontinuations were attributed to coronavirus disease 2019, pandemic-related restrictions likely had an impact on trial conduct. CONCLUSIONS: Rademikibart was efficacious and well tolerated at Q2W and Q4W intervals. Q4W dosing is a more convenient frequency than approved for current therapies.
Assuntos
Dermatite Atópica , Eczema , Adulto , Humanos , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Dermatite Atópica/complicações , Método Duplo-Cego , Eczema/complicações , Prurido/tratamento farmacológico , Índice de Gravidade de Doença , Resultado do TratamentoRESUMO
The connection between head and neck squamous cell carcinoma (HNSC) and M2 tumour-associated macrophages is not yet fully understood. We gathered gene expression profiles and clinical data from HNSC patients in the TCGA database. Using Consensus Clustering, we categorized these patients into M2 macrophage-related clusters. We developed a M2 macrophage-related signature (MRS) through statistical analyses. Additionally, we assessed gene expression in HNSC cells using single-cell sequencing data (GSE139324). We identified three distinct M2 macrophage-related clusters in HNSC, each with different prognostic outcomes and immune characteristics. Patients with different MRS profiles exhibited variations in immune infiltration, genetic mutations and prognosis. FCGR2A may play a role in creating an immunosuppressive tumour microenvironment and could potentially serve as a therapeutic target for HNSC. Our study demonstrated that M2 macrophage-related genes significantly impact the development and progression of HNSC. The M2 macrophage-related model offered a more comprehensive assessment of HNSC patient prognosis, genetic mutations and immune features. FCGR2A was implicated in immunosuppressive microenvironments and may hold promise for the development of novel immunotherapeutic strategies for HNSC.
Assuntos
Regulação Neoplásica da Expressão Gênica , Macrófagos , RNA-Seq , Análise de Célula Única , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Análise de Célula Única/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Macrófagos/metabolismo , Macrófagos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , RNA-Seq/métodos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Receptores de IgG/genética , Receptores de IgG/metabolismo , Perfilação da Expressão Gênica , Mutação , Transcriptoma/genética , Masculino , Feminino , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Horticultural plants contribute immensely to the quality of human's life. The rapid development of omics studies on horticultural plants has resulted in large volumes of valuable growth- and development-related data. Genes that are essential for growth and development are highly conserved in evolution. Cross-species data mining reduces the impact of species heterogeneity and has been extensively used for conserved gene identification. Owing to the lack of a comprehensive database for cross-species data mining using multi-omics data from all horticultural plant species, the current resources in this field are far from satisfactory. Here, we introduce GERDH (https://dphdatabase.com), a database platform for cross-species data mining among horticultural plants, based on 12 961 uniformly processed publicly available omics libraries from more than 150 horticultural plant accessions, including fruits, vegetables and ornamental plants. Important and conserved genes that are essential for a specific biological process can be obtained by cross-species analysis module with interactive web-based data analysis and visualization. Moreover, GERDH is equipped with seven online analysis tools, including gene expression, in-species analysis, epigenetic regulation, gene co-expression, enrichment/pathway and phylogenetic analysis. By interactive cross-species analysis, we identified key genes contributing to postharvest storage. By gene expression analysis, we explored new functions of CmEIN3 in flower development, which was validated by transgenic chrysanthemum analysis. We believe that GERDH will be a useful resource for key gene identification and will allow for omics big data to be more available and accessible to horticultural plant community members.
Assuntos
Epigênese Genética , Multiômica , Humanos , Filogenia , Produtos Agrícolas/genética , Bases de Dados Genéticas , Mineração de DadosRESUMO
Developing efficient, low-cost, MOF catalysts for CO2 conversion at low CO2 concentrations under mild conditions is particularly interesting but remains highly challenging. Herein, we prepared an isostructural series of two-dimensional (2D) multivariate metal-organic frameworks (MTV-MOFs) containing copper- and/or silver-based cyclic trinuclear complexes (Cu-CTC and Ag-CTC). These MTV-MOFs can be used as efficient and reusable heterogeneous catalysts for the cyclization of propargylamine with CO2. The catalytic performance of these MTV-MOFs can be engineered by fine-tuning the Ag/Cu ratio in the framework. Interestingly, the induction of 10% Ag remarkably improved the catalytic efficiency with a turnover frequency (TOF) of 243 h-1, which is 20-fold higher than that of 100% Cu-based MOF (i.e., TOF = 10.8 h-1). More impressively, such a bimetallic MOF still exhibited high catalytic activity even for simulated flue gas with 10% CO2 concentration. Furthermore, the reaction mechanism has been examined through the employment of NMR monitoring experiments and DFT calculations.
RESUMO
Though previous studies revealed the potential associations of elevated levels of plasma fibrinogen with dementia, there is still limited understanding regarding the influence of Alzheimer's disease (AD) biomarkers on these associations. We sought to investigate the interrelationships among fibrinogen, cerebrospinal fluid (CSF) AD biomarkers, and cognition in non-demented adults. We included 1996 non-demented adults from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) study and 337 from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The associations of fibrinogen with AD biomarkers and cognition were explored using multiple linear regression models. The mediation analyses with 10 000 bootstrapped iterations were conducted to explore the mediating effects of AD biomarkers on cognition. In addition, interaction analyses and subgroup analyses were conducted to assess the influence of covariates on the relationships between fibrinogen and AD biomarkers. Participants exhibiting low Aß42 were designated as A+, while those demonstrating high phosphorylated tau (P-tau) and total tau (Tau) were labeled as T+ and N+, respectively. Individuals with normal measures of Aß42 and P-tau were categorized as the A-T- group, and those with abnormal levels of both Aß42 and P-tau were grouped under A+T+. Fibrinogen was higher in the A+ subgroup compared to that in the A- subgroup (p = 0.026). Fibrinogen was higher in the A+T+ subgroup compared to that in the A-T- subgroup (p = 0.011). Higher fibrinogen was associated with worse cognition and Aß pathology (all p < 0.05). Additionally, the associations between fibrinogen and cognition were partially mediated by Aß pathology (mediation proportion range 8%-28%). Interaction analyses and subgroup analyses showed that age and ApoE ε4 affect the relationships between fibrinogen and Aß pathology. Fibrinogen was associated with both cognition and Aß pathology. Aß pathology may be a critical mediator for impacts of fibrinogen on cognition.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Biomarcadores , Cognição , Fibrinogênio , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Alzheimer/sangue , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/sangue , Biomarcadores/sangue , Cognição/fisiologia , Fibrinogênio/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/líquido cefalorraquidiano , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidianoRESUMO
We previously demonstrated a positive relation of secretory phospholipase A2 group IIA (sPLA2-IIA) with circulating high-density lipoprotein cholesterol (HDL-C) in patients with coronary artery disease, and sPLA2-IIA increased cholesterol efflux in THP-1 cells through peroxisome proliferator-activated receptor-γ (PPAR-γ)/liver X receptor α/ATP-binding cassette transporter A1 (ABCA1) signaling pathway. The aim of the present study was to examine the role of sPLA2-IIA over-expression on lipid profile in a transgenic mouse model. Fifteen apoE-/- and C57BL/7 female mice received bone marrow transplantation from transgenic SPLA2-IIA mice, and treated with specific PPAR-γ inhibitor GW9662. High fat diet was given after one week of bone marrow transplantation, and animals were sacrificed after twelve weeks. Immunohistochemical staining showed over-expression of sPLA2-IIA protein in the lung and spleen. The circulating level of HDL-C, but not that of low-density lipoprotein cholesterol (LDL-C), total cholesterol, or total triglyceride, was increased by sPLA2-IIA over-expression, and was subsequently reversed by GW9662 treatment. Over-expression of sPLA2-IIA resulted in augmented expression of cholesterol transporter ABCA1 at mRNA level in the aortas, and at protein level in macrophages, co-localized with macrophage specific antigen CD68. GW9662 exerted potent inhibitory effects on sPLA2-IIA-induced ABCA1 expression. Conclusively, we demonstrated the effects of sPLA2-IIA on circulating HDL-C level and the expression of ABCA1, possibly through regulation of PPAR-γ signaling in transgenic mouse model, that is in concert with the conditions in patients with coronary artery disease.
Assuntos
Transportador 1 de Cassete de Ligação de ATP , Molécula CD68 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Animais , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Feminino , Camundongos , Fosfolipases A2 do Grupo II/metabolismo , Fosfolipases A2 do Grupo II/genética , PPAR gama/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Baço/metabolismo , Transplante de Medula Óssea , Humanos , Lipídeos/sangueRESUMO
PURPOSE: Physical activity research among patients with metastatic breast cancer (MBC) is limited. This study examined the feasibility and potential benefits of Fit2ThriveMB, a tailored mHealth intervention. METHODS: Insufficiently active individuals with MBC (n = 49) were randomized 1:1 to Fit2ThriveMB (Fit2ThriveMB app, Fitbit, and weekly coaching calls) or Healthy Lifestyle attention control (Cancer.Net app and weekly calls) for 12 weeks. Fit2ThriveMB aimed to increase daily steps via an algorithm tailored to daily symptom rating and step goal attainment. The primary outcome was feasibility defined as ≥ 80% completion rate. Secondary feasibility metrics included meeting daily step goal and wearing the Fitbit ≥ 70% of study days, fidelity, adherence to intervention features and safety. Secondary outcomes included physical activity, sedentary time, patient reported outcomes (PROs), health-related quality of life (QOL) and social cognitive theory constructs. A subsample (n = 25) completed functional performance tests via video conferencing. RESULTS: The completion rate was 98% (n = 1 died). No related adverse events were reported. Fit2ThriveMB participants (n = 24) wore the Fitbit 92.7%, met their step goal 53.1%, set a step goal 84.6% and used the app 94.1% of 84 study days. Intent-to-treat analyses indicated trends toward improvements in activity, QOL, and some PROs, social cognitive theory constructs, and functional performance tests favoring the Fit2ThriveMB group. Significant effects favoring Fit2ThriveMB were observed for self-efficacy and goal-setting. However, some PROs and functional performance improvements favored the control group (p-values > 0.05). CONCLUSIONS: Fit2ThriveMB is feasible and safe for patients with MBC and warrants further evaluation in randomized controlled trials with larger sample sizes. Registration Clinicaltrials.gov NCT04129346, https://clinicaltrials.gov/ct2/show/NCT04129346.
Assuntos
Neoplasias da Mama , Exercício Físico , Estudos de Viabilidade , Medidas de Resultados Relatados pelo Paciente , Qualidade de Vida , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/psicologia , Neoplasias da Mama/terapia , Pessoa de Meia-Idade , Telemedicina , Idoso , Promoção da Saúde/métodos , Adulto , Metástase Neoplásica , Projetos Piloto , Aplicativos MóveisRESUMO
OBJECTIVES: Mechanisms of non-typhoidal Salmonella (NTS) resistance to azithromycin have rarely been reported. Here we investigate the epidemiology and genetic features of 10 azithromycin-resistant NTS isolates. METHODS: A total of 457 NTS isolates were collected from a tertiary hospital in Guangzhou. We performed antimicrobial susceptibility tests, conjugation experiments, efflux pump expression tests, whole-genome sequencing and bioinformatics analysis to conduct the study. RESULTS: The results showed that 10 NTS isolates (2.8%) were resistant to azithromycin with minimum inhibitory concentration values ranging from 128 to 512â mg/L and exhibited multidrug resistance. The phylogenetic tree revealed that 5 S. London isolates (AR1-AR5) recognized at different times and departments were closely related [3-74 single-nucleotide polymorphisms (SNPs)] and 2 S. Typhimurium isolates (AR7 and AR8) were clones (<3 SNPs) at 3-month intervals. The azithromycin resistance was conferred by mph(A) gene found on different plasmids, including IncFIB, IncHI2, InFII, IncC and IncI plasmids. Among them, IncFIB, InFII and IncHI2 plasmids carried different IS26-class 1 integron (intI1) arrangement patterns that mediated multidrug resistance transmission. Conjugative IncC plasmid encoded resistance to ciprofloxacin, ceftriaxone and azithromycin. Furthermore, phylogenetic analysis demonstrated that mph(A)-positive plasmids closely related to 10 plasmids in this study were mainly discovered from NTS, Escherichia coli, Klebsiella pneumonia and Enterobacter hormaechei. The genetic environment of mph(A) in 10 NTS isolates was IS26-mph(A)-mrx(A)-mphR(A)-IS6100/IS26 that co-arranged with intI1 harbour multidrug-resistant (MDR) gene cassettes on diverse plasmids. CONCLUSIONS: These findings highlighted that the dissemination of these plasmids carrying mph(A) and various intI1 MDR gene cassettes would seriously restrict the availability of essential antimicrobial agents for treating NTS infections.
Assuntos
Antibacterianos , Azitromicina , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Filogenia , Plasmídeos , Infecções por Salmonella , Salmonella , Azitromicina/farmacologia , Humanos , Plasmídeos/genética , Infecções por Salmonella/microbiologia , Antibacterianos/farmacologia , Salmonella/genética , Salmonella/efeitos dos fármacos , Salmonella/classificação , Salmonella/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , China , Sequenciamento Completo do Genoma , Masculino , Polimorfismo de Nucleotídeo Único , Feminino , Centros de Atenção TerciáriaRESUMO
OBJECTIVES: Viruses have been considered as important participants in the development of rheumatoid arthritis (RA). However, the profile of enteric virome and its role in RA remains elusive. This study aimed to investigate the atlas and involvement of virome in RA pathogenesis. METHODS: Faecal samples from 30 pairs of RA and healthy siblings that minimise genetic interferences were collected for metagenomic sequencing. The α and ß diversity of the virome and the virome-bacteriome interaction were analysed. The differential bacteriophages were identified, and their correlations with clinical and immunological features of RA were analysed. The potential involvement of these differential bacteriophages in RA pathogenesis was further investigated by auxiliary metabolic gene annotation and molecular mimicry study. The responses of CD4+ T cells and B cells to the mimotopes derived from the differential bacteriophages were systemically studied. RESULTS: The composition of the enteric bacteriophageome was distorted in RA. The differentially presented bacteriophages correlated with the immunological features of RA, including anti-CCP autoantibody and HLA-DR shared epitope. Intriguingly, the glycerolipid and purine metabolic genes were highly active in the bacteriophages from RA. Moreover, peptides of RA-enriched phages, in particular Prevotella phage and Oscillibacter phage could provoke the autoimmune responses in CD4+ T cells and plasma cells via molecular mimicry of the disease-associated autoantigen epitopes, especially those of Bip. CONCLUSIONS: This study provides new insights into enteric bacteriophageome in RA development. In particular, the aberrant bacteriophages demonstrated autoimmunity-provoking potential that would promote the occurrence of the disease.
RESUMO
OBJECTIVES: B10 and B10pro cells suppress immune responses via secreting interleukin (IL)-10. However, their regulators and underlying mechanisms, especially in human autoimmune diseases, are elusive. This study aimed to address these questions in rheumatoid arthritis (RA), one of the most common highly disabling autoimmune diseases. METHODS: The frequencies and functions of B10 and B10pro cells in healthy individuals and patients with RA were first analysed. The effects of proinflammatory cytokines, particularly tumour necrosis factor (TNF)-α on the quantity, stability and pathogenic phenotype of these cells, were then assessed in patients with RA before and after anti-TNF therapy. The underlying mechanisms were further investigated by scRNA-seq database reanalysis, transcriptome sequencing, TNF-α-/- and B cell-specific SHIP-1-/- mouse disease model studies. RESULTS: TNF-α was a key determinant for B10 cells. TNF-α elicited the proinflammatory feature of B10 and B10pro cells by downregulating IL-10, and upregulating interferon-γ and IL-17A. In patients with RA, B10 and B10pro cells were impaired with exacerbated proinflammatory phenotype, while anti-TNF therapy potently restored their frequencies and immunosuppressive functions, consistent with the increased B10 cells in TNF-α-/- mice. Mechanistically, TNF-α diminished B10 and B10pro cells by inhibiting their glycolysis and proliferation. TNF-α also regulated the phosphatidylinositol phosphate signalling of B10 and B10pro cells and dampened the expression of SHIP-1, a dominant phosphatidylinositol phosphatase regulator of these cells. CONCLUSIONS: TNF-α provoked the proinflammatory phenotype of B10 and B10pro cells by disturbing SHIP-1 in RA, contributing to the disease development. Reinstating the immunosuppressive property of B10 and B10pro cells might represent novel therapeutic approaches for RA.
Assuntos
Artrite Reumatoide , Doenças Autoimunes , Linfócitos B Reguladores , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Doenças Autoimunes/metabolismo , Linfócitos B Reguladores/metabolismo , Fenótipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Tumor necrosis factor receptor-1 (TNFR1) signaling, apart from its pleiotropic functions in inflammation, plays a role in embryogenesis as deficiency of varieties of its downstream molecules leads to embryonic lethality in mice. Caspase-8 noncleavable receptor interacting serine/threonine kinase 1 (RIPK1) mutations occur naturally in humans, and the corresponding D325A mutation in murine RIPK1 leads to death at early midgestation. It is known that both the demise of Ripk1D325A/D325A embryos and the death of Casp8-/- mice are initiated by TNFR1, but they are mediated by apoptosis and necroptosis, respectively. Here, we show that the defects in Ripk1D325A/D325A embryos occur at embryonic day 10.5 (E10.5), earlier than that caused by Casp8 knockout. By analyzing a series of genetically mutated mice, we elucidated a mechanism that leads to the lethality of Ripk1D325A/D325A embryos and compared it with that underlies Casp8 deletion-mediated lethality. We revealed that the apoptosis in Ripk1D325A/D325A embryos requires a scaffold function of RIPK3 and enzymatically active caspase-8. Unexpectedly, caspase-1 and caspase-11 are downstream of activated caspase-8, and concurrent depletion of Casp1 and Casp11 postpones the E10.5 lethality to embryonic day 13.5 (E13.5). Moreover, caspase-3 is an executioner of apoptosis at E10.5 in Ripk1D325A/D325A mice as its deletion extends life of Ripk1D325A/D325A mice to embryonic day 11.5 (E11.5). Hence, an unexpected death pathway of TNFR1 controls RIPK1 D325A mutation-induced lethality at E10.5.
Assuntos
Caspase 8/fisiologia , Desenvolvimento Embrionário , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Caspases/metabolismo , Morte Celular , Camundongos , Cultura Primária de Células , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
The highly diverse microbial ecosystem of the human body colonizes the gastrointestinal tract has a profound impact on the host's immune, metabolic, endocrine, and other physiological processes, which are all interconnected. Specifically, gut microbiota has been found to play a crucial role in facilitating the adaptation and initiation of immune regulatory response through the gastrointestinal tract affecting the other distal mucosal sites such as lungs. A tightly regulated lung-gut axis during respiratory ailments may influence the various molecular patterns that instructs priming the disease severity to dysregulate the normal function. This review provides a comprehensive summary of current research on gut microbiota dysbiosis in respiratory diseases including asthma, pneumonia, bronchopneumonia, COPD during infections and cancer. A complex-interaction among gut microbiome, associated metabolites, cytokines, and chemokines regulates the protective immune response activating the mucosal humoral and cellular response. This potential mechanism bridges the regulation patterns through the gut-lung axis. This paper aims to advance the understanding of the crosstalk of gut-lung microbiome during infection, could lead to strategize to modulate the gut microbiome as a treatment plan to improve bad prognosis in various respiratory diseases.
Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças Respiratórias , Humanos , Citocinas , PulmãoRESUMO
PURPOSE OR OBJECTIVE: Surfactants, including polysorbates and poloxamers, play a crucial role in the formulation of therapeutic proteins by acting as solubilizing and stabilizing agents. They help prevent protein aggregation and adsorption, thereby enhancing the stability of drug substance and products., However, it is important to note that utilizing high concentrations of surfactants in protein formulations can present significant analytical challenges, which can ultimately affect the product characterization. METHODS: In our study, we specifically investigated the impact of elevated surfactant concentrations on the characterization of monoclonal antibodies. We employed various analytical techniques including size-exclusion chromatography (SEC), capillary electrophoresis (CE-SDS), a cell based functional assay, and biophysical characterization. RESULTS: The findings of our study indicate that higher levels of Polysorbate 80 (PS-80) have adverse effects on the measured purity, biological activity, and biophysical characterization of biologic samples. Specifically, the elevated levels of PS-80 cause analytical interferences, which can significantly impact the accuracy and reliability of analytical studies. CONCLUSIONS: Our study results highlight a significant risk in analytical investigations, especially in studies involving the isolation and characterization of impurities. It is important to be cautious of surfactant concentrations, as they can become more concentrated during common sample manipulations like buffer exchange. Indeed, the research presented in this work emphasizes the necessity to evaluate the impact on analytical assays when there are substantial alternations in the matrix composition. By doing so, valuable insights can be gained regarding potential challenges associated with assay development and characterization of biologics with complex formulations.
Assuntos
Anticorpos Monoclonais , Tensoativos , Tensoativos/química , Anticorpos Monoclonais/química , Cromatografia Líquida de Alta Pressão , Reprodutibilidade dos Testes , Polissorbatos/química , LipoproteínasRESUMO
Cbl-b is a negative regulator of T cell activation, and in murine models, a lack of Cblb results in resistance of T effector (Teff) cells to T regulatory (Treg) cells, a feature of T cells in many autoimmune diseases. Here, we used trackable gene editing approaches to knock out CBLB in primary human CD4+ T cells. We found that CBLB-knockout (CBLB-KO) CD4+ T cells were hyperproliferative and produced excessive amounts of IL-2. CBLB-KO CD4+ T cells were resistant to Treg suppression in vitro, which was partially reversed by blockade of IL-2. RNA-sequencing and puromycin incorporation assays demonstrated that CBLB-KO CD4+ T cells can overcome Treg suppression on the transcriptional and translational levels, resulting in the overproduction of cytokines to drive the proliferation and activation of Teff cells. These findings highlight a potential mechanism of Teff resistance in human autoimmune disease and the power of gene editing primary T cells to explore disease mechanisms.
Assuntos
Doenças Autoimunes , Linfócitos T CD4-Positivos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Doenças Autoimunes/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-2/genética , Interleucina-2/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Puromicina , RNA/metabolismo , Linfócitos T ReguladoresRESUMO
BACKGROUND: Atrial fibrillation (AF) is a common cardiac arrhythmia. The ratio of red cell distribution width (RDW) to albumin has been recognized as a reliable prognostic marker for poor outcomes in a variety of diseases. However, the evidence regarding the association between RDW to albumin ratio (RAR) and in hospital mortality in patients with AF admitted to the Intensive Care Unit (ICU) currently was unclear. The purpose of this study was to explore the association between RAR and in hospital mortality in patients with AF in the ICU. METHODS: This retrospective cohort study used data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database for the identification of patients with atrial fibrillation (AF). The primary endpoint investigated was in-hospital mortality. Multivariable-adjusted Cox regression analysis and forest plots were utilized to evaluate the correlation between the RAR and in-hospital mortality among patients with AF admitted to ICU. Additionally, receiver operating characteristic (ROC) curves were conducted to assess and compare the predictive efficacy of RDW and the RAR. RESULTS: Our study included 4,584 patients with AF with a mean age of 75.1 ± 12.3 years, 57% of whom were male. The in-hospital mortality was 20.3%. The relationship between RAR and in-hospital mortality was linear. The Cox proportional hazard model, adjusted for potential confounders, found a high RAR independently associated with in hospital mortality. For each increase of 1 unit in RAR, there is a 12% rise in the in-hospital mortality rate (95% CI 1.06-1.19). The ROC curves revealed that the discriminatory ability of the RAR was better than that of RDW. The area under the ROC curves (AUCs) for RAR and RDW were 0.651 (95%CI: 0.631-0.671) and 0.599 (95% CI: 0.579-0.620). CONCLUSIONS: RAR is independently correlated with in hospital mortality and in AF. High level of RAR is associated with increased in-hospital mortality rates.
Assuntos
Fibrilação Atrial , Índices de Eritrócitos , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Fibrilação Atrial/diagnóstico , Mortalidade Hospitalar , Estudos Retrospectivos , Cuidados Críticos , PrognósticoRESUMO
BACKGROUND AND AIM: Abdominal aortic calcification (AAC) is a key predictor of cardiovascular diseases (CVDs). The Oxidative Balance Score (OBS) served as a tool to evaluate the systemic status of oxidative stress. However, evidence on the link between OBS and severe abdominal aortic calcification (SAAC) is currently inadequate. This study aims to establish this correlation in the US adult population, contributing valuable insights to the understanding of cardiovascular health. METHODS AND RESULTS: In our study with 2745 participants from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), we analyzed both OBS and AAC score data. Logistic regression and smooth curve fitting were used to investigate the relationship between OBS and SAAC. The overall prevalence of severe abdominal aortic calcification disease was 9.1%. Multivariable logistic regression revealed that higher oxidative balance scores were associated with a lower risk of SAAC. After adjusting for potential confounders (model III), for every 1-point increase in oxidative balance scores, the odds of SAAC decreased by 3% [OR = 0.97, 95% CI= (0.95,0.99), P = 0.03]. The dose-response relationship demonstrated a negative correlation between oxidative balance scores and SAAC (p for nonlinear = 0.368). CONCLUSIONS: This study reveals a negative association between oxidative balance scores and severe abdominal aortic calcification in US adults. The implications of these findings merit careful consideration and should be taken into account in the formulation of clinical guidelines and updates.