Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(3): 236, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553452

RESUMO

Metastasis is a bottleneck in cancer treatment. Studies have shown the pivotal roles of long noncoding RNAs (lncRNAs) in regulating cancer metastasis; however, our understanding of lncRNAs in gastric cancer (GC) remains limited. RNA-seq was performed on metastasis-inclined GC tissues to uncover metastasis-associated lncRNAs, revealing upregulated small nucleolar RNA host gene 26 (SNHG26) expression, which predicted poor GC patient prognosis. Functional experiments revealed that SNHG26 promoted cellular epithelial-mesenchymal transition and proliferation in vitro and in vivo. Mechanistically, SNHG26 was found to interact with nucleolin (NCL), thereby modulating c-Myc expression by increasing its translation, and in turn promoting energy metabolism via hexokinase 2 (HK2), which facilitates GC malignancy. The increase in energy metabolism supplies sufficient energy to promote c-Myc translation and expression, forming a positive feedback loop. In addition, metabolic and translation inhibitors can block this loop, thus inhibiting cell proliferation and mobility, indicating potential therapeutic prospects in GC.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Metabolismo Energético , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Biossíntese de Proteínas , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia
2.
World J Gastroenterol ; 21(30): 9093-102, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26290635

RESUMO

AIM: To investigate biological mechanisms underlying pyruvate kinase M2 isoform (PKM2) regulation of cell migration and invasion in hepatocellular carcinoma cells. METHODS: HepG2 and Huh-7 hepatocellular carcinoma cell lines were stably transfected and cultured in DMEM (HyClone, Logan, UT, United States). To investigate the effects of PKM2 on cellular proliferation, hepatocellular carcinoma cells were subjected to the Cell Counting Kit-8 (Dojindo, Kamimashiki-gun, Kumamoto, Japan). And investigate the effects of PKM2 on cell signal pathway related with migration and invasion, Western immunoblotting were used to find out the differential proteins. All the antibody used was purchaseed from Cell Signal Technology. In order to explore cell motility used Transwell invasion and wound healing assays. The transwell plate with 0.5 mg/mL collagen type I (BD Bioscience, San Jose, CA)-coated filters. The wound-healing assay was performed in 6-well plates. Total RNA was extracted using TRIzol reagent (Invitrogen, CA, United States) and then reverse transcription was conducted. Quantitative reverse transcription-polymerase chain reaction (PCR) analysis was performed with the ABI 7500 real-time PCR system (Applied Biosystems). We further use digital gene expression tag profiling and identification of differentially expressed genes. RESULTS: The cells seeded in four 96-well plates were measured OD450 by conducted Cell Counting Kit-8. From this conduction we observed that both HepG2 and Huh-7 hepatocellular carcinoma cells with silenced PKM2 turn on a proliferate inhibition; however, cell migration and invasion were enhanced compared with the control upon stimulation with epidermal growth factor (EGF). Our results indicate that the knockdown of PKM2 decreased the expression of E-cadherin and enhanced the activity of the EGF/EGFR signaling pathway, furthermore up-regulate the subsequent signal molecular the PLCγ1 and extracellular signal-regulated kinase 1/2 expression in the hepatocellular carcinoma cell lines HepG2 and Huh-7, which regulates cell motility. These variations we observed were due to the activation of the transforming growth factor beta (TGFß) signaling pathway after PKM2 knockdown. We also found that the expression of TGFBRI was increased and the phosphorylation of Smad2 was enhanced. Taken together, our findings demonstrate that PKM2 can regulate cell motility through the EGF/EGFR and TGFß/TGFR signaling pathways in hepatocellular carcinoma cells. CONCLUSION: PKM2 play different roles in modulating the proliferation and metastasis of hepatocellular carcinoma cells, and this finding could help to guide the future targeted therapies.


Assuntos
Carcinoma Hepatocelular/enzimologia , Proteínas de Transporte/metabolismo , Movimento Celular , Neoplasias Hepáticas/enzimologia , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/genética , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Hormônios Tireóideos/genética , Fatores de Tempo , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA