Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Microbiol ; 60(2): 251-253, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32255858

RESUMO

It is very important to rapidly detect the contamination of Enterococcus faecalis in fermented foods such as Korean Kimchi to maintain its freshness since Kimchi is exported to all over the world. However, gene sequence of E. faecalis is very similar among various Lactobacillus. So, there have been difficulties in its screening. We have designed primers based on Bile salt hydrolase gene of E. faecalis and applied them to PCR test. PCR band was identified only from E. faecalis and only from the mixture contaminated with E. faecalis. It means that the primers we designed are highly specific for distinguishing contamination of E. faecalis. It will be possible to precisely screen within 1 h, which will greatly contribute to the prevention of food poisoning and quick quarantine.

2.
Adv Exp Med Biol ; 1064: 73-89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30471027

RESUMO

Graphene is a two-dimensional atomic layer of graphite, where carbon atoms are assembled in a honeycombed lattice structure. Recently, graphene family nanomaterials, including pristine graphene, graphene oxide and reduced graphene oxide, have increasingly attracted a great deal of interest from researchers in a variety of science, engineering and industrial fields because of their unique structural and functional features. In particular, extensive studies have been actively conducted in the biomedical and related fields, including multidisciplinary and emerging areas, as their stimulating effects on cell behaviors have been becoming an increasing concern. Herein, we are attempting to summarize some of recent findings in the fields of tissue regeneration concerning the graphene family nanomaterial-functionalized biomimetic scaffolds, and to provide the promising perspectives for the possible applications of graphene family nanomaterial.


Assuntos
Materiais Biomiméticos , Grafite/química , Nanoestruturas , Engenharia Tecidual , Alicerces Teciduais , Óxidos , Regeneração
3.
Adv Exp Med Biol ; 1078: 103-117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357620

RESUMO

Tissues are often damaged by physical trauma, infection or tumors. A slight injury heals naturally through the normal healing process, while severe injury causes serious health implications. Therefore, many efforts have been devoted to treat and repair various tissue defects. Recently, tissue engineering approaches have attracted a rapidly growing interest in biomedical fields to promote and enhance healing and regeneration of large-scale tissue defects. On the other hand, with the recent advances in nanoscience and nanotechnology, various nanomaterials have been suggested as novel biomaterials. Graphene, a two-dimensional atomic layer of graphite, and its derivatives have recently been found to possess promoting effects on various types of cells. In addition, their unique properties, such as outstanding mechanical and biological properties, allow them to be a promising option for hard tissue regeneration. Herein, we summarized recent research advances in graphene-based nanocomposites for hard tissue regeneration, and highlighted their promising potentials in biomedical and tissue engineering.


Assuntos
Regeneração Óssea , Grafite , Nanocompostos , Engenharia Tecidual , Materiais Biocompatíveis , Humanos , Nanotecnologia
4.
Diabetologia ; 58(10): 2361-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26152662

RESUMO

AIM/HYPOTHESIS: Obesity-induced inflammation plays an important role in the development of insulin resistance and type 2 diabetes. Recent studies have demonstrated that adiposity can be improved by ablating certain inflammatory signalling pathways. Although the IL-7 receptor (IL-7R) is mostly known as a key regulator of T lymphocyte development and homeostasis, its role in obesity and metabolic diseases is unknown. Because IL-7 is markedly increased in the serum of obese individuals and IL-7R (also known as IL7R) is overexpressed in white adipose tissue (WAT) in obesity, we studied the metabolic consequences of genetic Il-7r ablation in mice. METHODS: Age-matched Il-7r-deficient (Il-7r KO) and wild-type (WT) littermates were fed a standard chow or high-fat diet (HFD) for 14 weeks. Their serum metabolic variables were measured. The expression of genes and proteins related to insulin resistance and inflammation was evaluated in WAT. RESULTS: We demonstrated that Il-7r KO mice exhibited significantly reduced body weight gain and visceral adiposity compared with WT controls on both chow and HFD. The expression of signalling molecules involved in adipogenesis was reduced in the WAT of Il-7r KO mice. We also found that Il-7r KO mice had significantly enhanced glucose homeostasis and insulin sensitivity. Consistent with an improved metabolic phenotype, proinflammatory cytokine production and macrophage infiltration was attenuated in the WAT of Il-7r KO mice. CONCLUSIONS/INTERPRETATION: The IL-7R plays an important role in the induction of HFD-induced adipogenesis and insulin resistance in mice.


Assuntos
Adipogenia/genética , Adiposidade/genética , Resistência à Insulina/genética , Obesidade/genética , Receptores de Interleucina-7/genética , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Receptores de Interleucina-7/metabolismo
5.
ACS Appl Mater Interfaces ; 15(5): 7023-7029, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700926

RESUMO

Hybrid biological robots (biobots) prepared from living cells are at the forefront of micro-/nanomotor research due to their biocompatibility and versatility toward multiple applications. However, their precise maneuverability is essential for practical applications. Magnetotactic bacteria are hybrid biobots that produce magnetosome magnetite crystals, which are more stable than synthesized magnetite and can orient along the direction of earth's magnetic field. Herein, we used Magnetospirillum magneticum strain AMB-1 (M. magneticum AMB-1) for the effective removal of chlorpyrifos (an organophosphate pesticide) in various aqueous solutions by naturally binding with organic matter. Precision control of M. magneticum AMB-1 was achieved by applying a magnetic field. Under a programed clockwise magnetic field, M. magneticum AMB-1 exhibit swarm behavior and move in a circular direction. Consequently, we foresee that M. magneticum AMB-1 can be applied in various environments to remove and retrieve pollutants by directional control magnetic actuation.


Assuntos
Óxido Ferroso-Férrico , Magnetospirillum , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Descontaminação , Magnetospirillum/metabolismo , Robótica/métodos
6.
Nanomaterials (Basel) ; 9(9)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466309

RESUMO

The zero (0-D) and one-dimensional (1-D) carbon nanomaterials have gained attention among researchers because they exhibit a larger surface area to volume ratio, and a smaller size. Furthermore, carbon is ubiquitously present in all living organisms. However, toxicity is a major concern while utilizing carbon nanomaterials for biomedical applications such as drug delivery, biosensing, and tissue regeneration. In the present review, we have summarized some of the recent findings of cellular and animal level toxicity studies of 0-D (carbon quantum dot, graphene quantum dot, nanodiamond, and carbon black) and 1-D (single-walled and multi-walled carbon nanotubes) carbon nanomaterials. The in vitro toxicity of carbon nanomaterials was exemplified in normal and cancer cell lines including fibroblasts, osteoblasts, macrophages, epithelial and endothelial cells of different sources. Similarly, the in vivo studies were illustrated in several animal species such as rats, mice, zebrafish, planktons and, guinea pigs, at various concentrations, route of administrations and exposure of nanoparticles. In addition, we have described the unique properties and commercial usage, as well as the similarities and differences among the nanoparticles. The aim of the current review is not only to signify the importance of studying the toxicity of 0-D and 1-D carbon nanomaterials, but also to emphasize the perspectives, future challenges and possible directions in the field.

7.
Biomater Res ; 23: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798945

RESUMO

BACKGROUND: Two-dimensional black phosphorus nanosheets (BPNSs) have recently emerged as a successive novel nanomaterial owing to their uniqueness in optical and electrical properties. Although BPNSs have found a wide range of biomedical applications, their biosafety is still a major concern to be addressed. METHODS: In this study, we have prepared layered BPNSs using liquid exfoliation procedure, and evaluated their physicochemical properties using Fourier Transform-infrared (FTIR) spectroscopy, Raman spectroscopy, atomic force microscopy, and Zetasizer analyses. We have investigated potential cytotoxicity of BPNSs against three different types of fibroblast cells, i.e. mouse embryonic fibroblast (NIH3T3), primary cultured normal human dermal fibroblast (nHDF), and fibrosarcoma (HT1080). Cell counting kit-8 (CCK-8) assay was carried out to assess cellular metabolic activity in cells whereas lactate dehydrogenase (LDH) activity assay was helpful to study plasma membrane integrity. RESULTS: Our salient research findings showed that BPNSs were polydispersed in solution due to aggregation. Toxic response of BPNSs against fibroblast cells was in the order, HT1080>nHDF>NIH3T3. The nanosheets reduced the number of cancerous cells with significant difference to normal cells. CONCLUSIONS: We suggest that BPNSs can be considered for cancer treatment as they destroy cancerous cells effectively. However, a comprehensive study is required to elucidate other biological effects of BPNSs.

8.
Nanomaterials (Basel) ; 9(7)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311134

RESUMO

Owing to the astonishing properties of non-harmful viruses, tissue regeneration using virus-based biomimetic materials has been an emerging trend recently. The selective peptide expression and enrichment of the desired peptide on the surface, monodispersion, self-assembly, and ease of genetic and chemical modification properties have allowed viruses to take a long stride in biomedical applications. Researchers have published many reviews so far describing unusual properties of virus-based nanoparticles, phage display, modification, and possible biomedical applications, including biosensors, bioimaging, tissue regeneration, and drug delivery, however the integration of the virus into different biomaterials for the application of tissue regeneration is not yet discussed in detail. This review will focus on various morphologies of virus-incorporated biomimetic nanocomposites in tissue regeneration and highlight the progress, challenges, and future directions in this area.

9.
Antioxidants (Basel) ; 8(8)2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31416178

RESUMO

A polyphenolic extract from melon (Cucumis melo L.), as a potential source of natural antioxidants, has been reported to have a positive effect on osteoblast activity. In this study, the protective effects of heat-treated melon extract (ECO-A) on bone strength, mineralization, and metabolism were examined in osteoporotic rat models. Osteoporosis was induced by ovariectomy (OVX) in female rats and then maintained for 8 weeks, along with the ingestion of phosphate-buffered saline (PBS, OVXP) or ECO-A (OVXE) for an additional 4 weeks. At a pre-determined timepoint, bone strengths, as well as bone mineral contents (BMC) and the density (BMD) of femurs and/or lumbar spines extracted from each animal, were measured by a mechanical test and dual-energy X-ray absorptiometry, respectively. Moreover, several biochemical markers for bone turnover were analyzed by respective colorimetric assay kits in addition to clinical analyses. The maximum load and stiffness of femurs from the OVXE group were found to be significantly higher than the other groups. Furthermore, the OVXE group showed significantly higher BMC, BMD, and bone volume than the OVX and OVXP groups, which were comparable to the non-OVX (sham) group. The levels of bone formation and resorption markers in the OVXE group were similar to the sham group, but significantly different from other groups. In conclusion, these results suggest that ECO-A can play potentially positive roles in the protection of bone loss in rats with OVX-induced osteoporosis.

10.
Biochem Biophys Res Commun ; 369(2): 774-80, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18313401

RESUMO

In this study, heparin-conjugated poly(l-lactide-co-glycolide) (PLGA) nanospheres (HCPNs) suspended in fibrin gel (group 1) were developed for a long-term delivery of BMP-2, and then used to address the hypothesis that a long-term delivery of BMP-2 would enhance ectopic bone formation compared to a short-term delivery at an equivalent dose. Fibrin gel containing normal PLGA nanospheres (group 2) was used for short-term delivery of BMP-2. The in vitro release of BMP-2 from group 1 was sustained for 4 weeks with no initial burst release. In contrast, 83% of BMP-2 loaded in group 2 was released only for the first 3 days. BMP-2 released from group 1 stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 9 days in vitro. In contrast, BMP-2 released from group 2 induced a transient increase in ALP activity for the first 5 days and a decrease thereafter. Importantly, group 1 induced bone formation to a much greater extent than did group 2, with 2.0-fold greater bone formation area and 3.5-fold greater calcium content, upon implantation into rat hind limb muscle. These results show that long-term delivery of BMP-2 enhances in vivo osteogenic efficacy of the protein compared to short-term delivery at an equivalent dose.


Assuntos
Proteínas Morfogenéticas Ósseas/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Fator de Crescimento Transformador beta/administração & dosagem , Animais , Proteína Morfogenética Óssea 2 , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
11.
Nanomaterials (Basel) ; 8(6)2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882820

RESUMO

Black phosphorus (BP) is a monolayer/multilayer two-dimensional (2D) nanomaterial, which has recently emerged as one of the most attractive 2D nanomaterials due to its fascinating physicochemical and optoelectronical properties. Layered BP may have promising applications in biomedical fields, such as drug delivery, photodynamic/photothermal therapy and bioimaging, although its intrinsic toxicity has not been fully elucidated yet. In the present study, the cytotoxicological effects of layered BP on both cell metabolic activity and membrane integrity were investigated. Layered BPs were prepared using a modified ultrasonication-assisted solution method, and their physicochemical properties were characterized. The dose- and time-dependent cytotoxicity of layered BP was assessed against L-929 fibroblasts. Our findings indicate that the cytotoxicity of BPs is proportionally dependent on their concentration and exposure time, which is affected by the oxidative stress-mediated enzyme activity reduction and membrane disruption. On the other hand, layered BPs did not exhibit significant cytotoxicity at concentrations lower than 4 µg/mL. Therefore, it is suggested that layered BPs can be effectively utilized as therapeutic delivery carriers and imaging agents.

12.
Biomater Res ; 22: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30305920

RESUMO

BACKGROUND: Black phosphorus (BP) has emerged as a novel class of nanomaterials owing to its unique optical and electronic properties. BP, a two-dimensional (2D) nanomaterial, is a structure where phosphorenes are stacked together in layers by van der Waals interactions. However, although BP nanodots have many advantages, their biosafety and biological effect have not yet been elucidated as compared to the other nanomaterials. Therefore, it is particularly important to assess the cytotoxicity of BP nanodots for exploring their potentials as novel biomaterials. METHODS: BP nanodots were prepared by exfoliation with a modified ultrasonication-assisted solution method. The physicochemical properties of BP nanodots were characterized by transmission electron microscopy, dynamic light scattering, Raman spectroscopy, and X-ray diffractometry. In addition, the cytotoxicity of BP nanodots against C2C12 myoblasts was evaluated. Moreover, their cell imaging potential was investigated. RESULTS: Herein, we concentrated on evaluating the cytotoxicity of BP nanodots and investigating their cell imaging potential. It was revealed that the BP nanodots were cytocompatible at a low concentration, although the cell viability was decreased with increasing BP nanodot concentration. Furthermore, our results demonstrated that the cells took up the BP nanodots, and the BP nanodots exhibited green fluorescence. CONCLUSIONS: In conclusion, our findings suggest that the BP nanodots have suitable biocompatibility, and are promising candidates as fluorescence probes for biomedical imaging applications.

13.
Nanotheranostics ; 2(2): 144-156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577018

RESUMO

Recently, there have been tremendous efforts to develop the biofunctional scaffolds by incorporating various biochemical factors. In the present study, we fabricated poly(lactic-co-glycolic acid) (PLGA) nanofiber sheets decorated with graphene oxide (GO) and RGD peptide. The decoration of GO and RGD peptide was readily achieved by using RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and electrospinning. Furthermore, the aligned GO-decorated PLGA/RGD peptide (GO-PLGA/RGD) ternary nanofiber sheets were prepared by magnetic field-assisted electrospinning, and their potentials as bifunctional scaffolds for facilitating myogenesis were explored. We characterized the physicochemical and mechanical properties of the sheets by scanning electron microscopy, Raman spectroscopy, contact angle measurement, and tensile test. In addition, the C2C12 skeletal myoblasts were cultured on the aligned GO-PLGA/RGD nanofiber sheets, and their cellular behaviors, including initial attachment, proliferation and myogenic differentiation, were evaluated. Our results revealed that the GO-PLGA/RGD nanofiber sheets had suitable physicochemical and mechanical properties for supporting cell growth, and could significantly promote the spontaneous myogenic differentiation of C2C12 skeletal myoblasts. Moreover, it was revealed that the myogenic differentiation was further accelerated on the aligned GO-PLGA/RGD nanofiber sheets due to the synergistic effects of RGD peptide, GO and aligned nanofiber structure. Therefore, , it is suggested that the aligned GO-PLGA/RGD ternary nanofiber sheets are one of the most promising approaches for facilitating myogenesis and promoting skeletal tissue regeneration.

14.
Sci Rep ; 8(1): 5570, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615798

RESUMO

Neural tissue regeneration is a significant challenge, because severe nerve injury is quite difficult to regenerate spontaneously. Although, many studies have been devoted to promote nerve regeneration, there are still many technical challenges to achieve satisfactory results. In this study, we designed biomimetic matrices composed of aligned laminin core-polydioxanone/collagen shell (Lam-PDO/Col) fibers, which can provide both topographical and biochemical cues for promoting neuritogenesis. The aligned Lam-PDO/Col core-shell fiber matrices were fabricated by magnetic field-assisted electrospinning with the coaxial system, and their potential as biofunctional scaffolds for promoting neuritogenesis was explored. It was demonstrated that the aligned Lam-PDO/Col core-shell fibers were successfully fabricated, and the laminin in the core of fibers was steadily and continuously released from fibers. In addition, the cellular behaviors of hippocampal neuronal cells on the matrices were significantly enhanced. Moreover, the aligned Lam-PDO/Col fiber matrices effectively improved and guided neurite outgrowth as well as the neurogenic differentiation by providing both topographical and biochemical cues through aligned fiber structure and sustained release of laminin. Collectively, it is suggested that the aligned Lam-PDO/Col core-shell fiber matrices are one of the most promising approaches for promoting neuritogenesis and neural tissue regeneration.


Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Colágeno/química , Regeneração Tecidual Guiada/métodos , Laminina/química , Neuritos/efeitos dos fármacos , Polidioxanona/química , Linhagem Celular , Humanos , Neuritos/metabolismo
15.
Biomaterials ; 28(17): 2763-71, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17350678

RESUMO

In this study, a heparin-conjugated poly(l-lactic-co-glycolic acid) (HP-PLGA) scaffold was developed for the sustained delivery of bone morphogenetic protein-2 (BMP-2), and then used to address the hypothesis that BMP-2 delivered from this scaffold could enhance ectopic bone formation. We found the amount of heparin conjugated to the PLGA scaffolds could be increased up to 3.2-fold by using scaffolds made from star-shaped PLGA, as compared to scaffolds made from linear PLGA, and that the release of BMP-2 from the HP-PLGA scaffold was sustained for at least 14 days in vitro. The BMP-2 released from the HP-PLGA scaffold stimulated an increase in alkaline phosphatase (ALP) activity of osteoblasts for 14 days in vitro, suggesting that the HP-PLGA scaffold delivery system releases BMP-2 in a bioactive form for a prolonged period. By contrast, BMP-2 release from unmodified (no heparin) PLGA scaffolds induced a transient increase in ALP activity for the first 3 days and a decrease thereafter. In vivo bone formation studies showed the BMP-2-loaded HP-PLGA scaffolds induced bone formation to a much greater extent than did either BMP-2-loaded unmodified PLGA scaffolds or unloaded (no BMP-2) HP-PLGA scaffolds, with 9-fold greater bone formation area and 4-fold greater calcium content in the BMP-2-loaded HP-PLGA scaffold group compared to the BMP-2-loaded unmodified PLGA scaffold group. Collectively, these results demonstrate that the HP-PLGA delivery system is capable of potentiating the osteogenic efficacy of BMP-2, and underscore its importance as a possible bone regeneration strategy.


Assuntos
Materiais Biocompatíveis/química , Proteínas Morfogenéticas Ósseas/administração & dosagem , Proteínas Morfogenéticas Ósseas/farmacologia , Heparina/química , Ácido Láctico/química , Osteogênese/efeitos dos fármacos , Ácido Poliglicólico/química , Polímeros/química , Engenharia Tecidual/métodos , Fator de Crescimento Transformador beta/administração & dosagem , Fator de Crescimento Transformador beta/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Proteína Morfogenética Óssea 2 , Proteínas Morfogenéticas Ósseas/metabolismo , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Feminino , Heparina/síntese química , Humanos , Hidrólise , Cinética , Ácido Láctico/síntese química , Músculo Esquelético/citologia , Ácido Poliglicólico/síntese química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/síntese química , Porosidade , Próteses e Implantes , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo
16.
J Drug Target ; 15(3): 190-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17454356

RESUMO

Polymeric nanospheres fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) have been extensively investigated for applications in gene delivery. In this study, we show that the covalent conjugation of a nuclear localization signal (NLS, SV40 peptide) on PLGA nanospheres enhances the gene transfection efficiency. NLS conjugated PLGA copolymer was prepared by using a coupling reaction between maleimide-terminated PLGA copolymer and NLS in the presence of Imject maleimide conjugation buffer. PLGA nanospheres encapsulating plasmid (pDNA) were prepared by using a double emulsion-solvent evaporation method. The kinetics of in vitro release of pDNA from PLGA nanospheres was determined with UV in phosphate buffered saline (PBS). Gene transfection efficiency in human dermal fibroblasts was tested in vitro using nanospheres encapsulating the luciferase gene. The conjugation of the NLS peptide to the PLGA nanospheres could improve the nuclear localization and/or cellular uptake of PLGA nanosphere/pDNA constructs and thereby improve the transfection efficiency of a PLGA nanosphere gene delivery system. The pDNA was released from PLGA nanospheres over nine days. NLS conjugation enhanced the gene transfection efficiency in vitro by 1.2 approximately 3.2-fold over 13 days. PLGA/pDNA nanospheres appeared to be superior to PEI/pDNA complexes for the long-term expression of pDNA. Furthermore, the level of the sustained gene expression of the PLGA nanospheres was enhanced by the conjugation of NLS to the PLGA nanospheres. This study showed that the NLS conjugation enhanced the gene transfection efficiency of the PLGA nanosphere gene delivery system in vitro and that the enhanced gene expression was sustained for at least 13 days.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Ácido Láctico/química , Nanotubos/química , Sinais de Localização Nuclear/química , Plasmídeos/administração & dosagem , Ácido Poliglicólico/química , Polímeros/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , DNA/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Ácido Láctico/efeitos adversos , Nanotubos/efeitos adversos , Sinais de Localização Nuclear/efeitos adversos , Tamanho da Partícula , Plasmídeos/genética , Ácido Poliglicólico/efeitos adversos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/efeitos adversos , Transfecção
17.
J Microbiol Biotechnol ; 17(7): 1113-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18051321

RESUMO

Human bone marrow-derived mesenchymal stem cells (hBMMSCs) must differentiate into osteogenic cells to allow for successful bone regeneration. In this study, we investigated the effects of different combinations of three soluble osteogenic differentiation-inducing factors [L-ascorbic acid (AC), beta-glycerophosphate (betaG), and bone morphogenic protein-2 (BMP-2)] and the presence of a hydroxyapatite (HA) substrate on hBMMSC osteogenic differentiation in vitro. hBMMSCs were cultured in medium containing various combinations of the soluble factors on culture plates with or without HA coating. After 7 days of culture, alkaline phosphatase (ALP) activity, calcium deposition, and osteoprotegerin (OPG) and osteopontin (OPN) expression were measured. The effects of individual and combined factors were evaluated using a factorial analysis method. BMP-2 predominantly affected expression of early markers of osteogenic differentiation (ALP and OPG). HA had the highest positive effect on OPN expression and calcium deposition. The interaction between AC, betaG, and HA had the second highest positive effect on ALP activity.


Assuntos
Ácido Ascórbico/farmacologia , Proteínas Morfogenéticas Ósseas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Durapatita/farmacologia , Glicerofosfatos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2 , Cálcio/análise , Cálcio/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Materiais Revestidos Biocompatíveis , Relação Dose-Resposta a Droga , Humanos , Células-Tronco Mesenquimais/citologia , Osteopontina/análise , Osteopontina/metabolismo , Osteoprotegerina/análise , Osteoprotegerina/metabolismo , Fatores de Tempo
18.
Nanomaterials (Basel) ; 7(8)2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28783114

RESUMO

In recent years, paramagnetic nanoparticles (NPs) have been widely used for magnetic resonance imaging (MRI). This paper reports the fabrication and toxicity evaluation of polyethylene glycol (PEG)-functionalized holmium oxide (Ho2O3) NPs for potential T2-weighted MRI applications. Various characterization techniques were used to examine the morphology, structure and chemical properties of the prepared PEG-Ho2O3 NPs. MRI relaxivity measurements revealed that PEG-Ho2O3 NPs could generate a strong negative contrast in T2-weighted MRI. The pilot cytotoxicity experiments showed that the prepared PEG-Ho2O3 NPs are biocompatible at concentrations less than 16 µg/mL. Overall, the prepared PEG-Ho2O3 NPs have potential applications for T2-weighted MRI imaging.

19.
Regen Biomater ; 4(3): 159-166, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28740639

RESUMO

In recent years, much research has been suggested and examined for the development of tissue engineering scaffolds to promote cellular behaviors. In our study, RGD peptide and graphene oxide (GO) co-functionalized poly(lactide-co-glycolide, PLGA) (RGD-GO-PLGA) nanofiber mats were fabricated via electrospinning, and their physicochemical and thermal properties were characterized to explore their potential as biofunctional scaffolds for vascular tissue engineering. Scanning electron microscopy images revealed that the RGD-GO-PLGA nanofiber mats were readily fabricated and composed of random-oriented electrospun nanofibers with average diameter of 558 nm. The successful co-functionalization of RGD peptide and GO into the PLGA nanofibers was confirmed by Fourier-transform infrared spectroscopic analysis. Moreover, the surface hydrophilicity of the nanofiber mats was markedly increased by co-functionalizing with RGD peptide and GO. It was found that the mats were thermally stable under the cell culture condition. Furthermore, the initial attachment and proliferation of primarily cultured vascular smooth muscle cells (VSMCs) on the RGD-GO-PLGA nanofiber mats were evaluated. It was revealed that the RGD-GO-PLGA nanofiber mats can effectively promote the growth of VSMCs. In conclusion, our findings suggest that the RGD-GO-PLGA nanofiber mats can be promising candidates for tissue engineering scaffolds effective for the regeneration of vascular smooth muscle.

20.
Nanomaterials (Basel) ; 7(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113052

RESUMO

Because of recent research advances in nanoscience and nanotechnology, there has been a growing interest in functional nanomaterials for biomedical applications, such as tissue engineering scaffolds, biosensors, bioimaging agents and drug delivery carriers. Among a great number of promising candidates, graphene and its derivatives-including graphene oxide and reduced graphene oxide-have particularly attracted plenty of attention from researchers as novel nanobiomaterials. Graphene and its derivatives, two-dimensional nanomaterials, have been found to have outstanding biocompatibility and biofunctionality as well as exceptional mechanical strength, electrical conductivity and thermal stability. Therefore, tremendous studies have been devoted to employ functional graphene nanomaterials in biomedical applications. Herein, we focus on the biological potentials of functional graphene nanomaterials and summarize some of major literature concerning the multifaceted biomedical applications of functional graphene nanomaterials to coated substrates, patterned arrays and hybrid scaffolds that have been reported in recent years.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA