Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Angew Chem Int Ed Engl ; 61(27): e202203850, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437873

RESUMO

Electrocatalysts for high-rate hydrogen evolution reaction (HER) are crucial to clean fuel production. Nitrogen-rich 2D transition metal nitride, designated "nitridene", has shown promising HER performance because of its unique physical/chemical properties. However, its synthesis is hindered by the sluggish growth kinetics. Here for the first time using a catalytic molten-salt method, we facilely synthesized a V-Mo bimetallic nitridene solid solution, V0.2 Mo0.8 N1.2 , with tunable electrocatalytic property. The molten-salt synthesis reduces the growth barrier of V0.2 Mo0.8 N1.2 and facilitates V dissolution via a monomer assembly, as confirmed by synchrotron spectroscopy and ex situ electron microscopy. Furthermore, by merging computational simulations, we confirm that the V doping leads to an optimized electronic structure for fast protons coupling to produce hydrogen. These findings offer a quantitative engineering strategy for developing analogues of MXenes for clean energy conversions.

2.
Nano Lett ; 20(7): 4754-4760, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32469531

RESUMO

Nanotube membranes could show significantly enhanced permeance and selectivity for gas separations. Up until now, studies have primarily focused on applying carbon nanotubes to membranes to achieve ultrafast mass transport. Here, we report the first preparation of silicon nanotube (SiNT) membranes via a template-assisted method and investigate the gas transport behavior through these SiNT membranes using single- and mixed-gas permeation experiments. The SiNT membranes consist of conical cylinder-shaped nanotubes vertically aligned on a porous silicon wafer substrate. The diameter of the SiNT pore mouths are 10 and 30 nm, and the average inner diameter of the tube body is 80 nm. Interestingly, among the gases tested, we found an unprecedentedly low CO2 permeance through the SiNT membranes in single-gas permeation experiments, exceeding the theoretical Knudsen selectivity toward small gases/CO2 separation. This behavior was caused by the reduction of CO2 permeability through the blocking effect of CO2 adsorbed in the narrow pore channels of the SiNT cone regions, indicating that CO2 molecules have a high affinity to the native silicon oxide layer (∼2 nm) that is formed on the inner walls of SiNTs. SiNT membranes also exhibited enhanced gas permeance and water flux as compared to classic theoretical models and, as such, may prove useful as a new type of nanotube material for use in membrane applications.

3.
Angew Chem Int Ed Engl ; 57(5): 1241-1245, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29214722

RESUMO

The development of efficient and stable catalyst systems with low-cost, abundant, and non-toxic materials is the primary demand for electrochemical water oxidation. A unique method is reported for the syntheses of metal hydroxide carbonate templated Prussian blue analogues (PBAs) on carbon cloth and their outstanding water oxidation activities in alkaline medium. The best water oxidation activity is obtained with cobalt hydroxide carbonate templated t-CoII -CoIII with an overpotential as low as 240 mV to reach a current density of 10 mA cm-2 . It produces constant current over 50 h in chronoamperometric measurements. Moreover, the catalysts outperform the activities of the PBAs prepared without any template and even the noble metal catalyst RuO2 . Spectroscopic and microscopic studies show that the PBAs are transformed into layered hydroxide-oxyhydroxide structures during electrochemical process and provide the active sites for the water oxidation.

4.
Phys Chem Chem Phys ; 19(6): 4648-4655, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28124693

RESUMO

We demonstrate the dual advantages of graded photoabsorbers in mesoporous metal oxide-based hetero interfacial photoanodes in improving photogenerated charge carrier (e-/h+) separation for the solar light-driven water-oxidation process. The pre-deposition of sol-gel-derived, tungsten-doped bismuth vanadate (W:BiVO4) onto a primary BiVO4 water oxidation layer forms graded interfaces, which facilitate charge transfer from the primary photoabsorber to the charge transport layer, thereby superseding the thickness-controlled charge recombination at the BiVO4 water oxidation catalyst. As a result, the WO3/BiVO4 hetero photoanode containing the photoactive W:BiVO4 interfacial layer showed 130% higher photocurrent than that of the interfacial layer-free hetero photoelectrode owing to the enhanced charge separation led water oxidation process.

5.
Phys Chem Chem Phys ; 19(41): 28207-28215, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29026899

RESUMO

Titanium dioxide (TiO2) with exposed (001) facets (TiO2(001)) has attractive photocatalytic properties. However, the high recombination rate of the photo-excited charge carriers on this surface often limits its application. Here, we report that a few-layered 1T-MoS2 coating on TiO2(001) nanosheets (abbreviated as MST) can be a promising candidate that overcomes some of the challenges of TiO2(001). Computational and experimental results demonstrate that MST as a photocatalyst exhibits a significantly low-charge recombination rate as well as excellent long-term durability. The synthesized MST 2D nanocomposites show a 31.9% increase in photocatalytic activity for hydrogen (H2) production relative to the counterpart TiO2(001). MST offers a new route for further improvement of the photocatalytic activity of TiO2 with exposed high energy facets.

6.
Nano Lett ; 15(10): 6658-64, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26359631

RESUMO

Managing interfacial instability is crucial for enhancing cyclability in lithium-ion batteries (LIBs), yet little attention has been devoted to this issue until recently. Here, we introduce graphene as an interfacial layer between the current collector and the anode composed of Si nanowires (SiNWs) to improve the cycling capability of LIBs. The atomically thin graphene lessened the stress accumulated by volumetric mismatch and inhibited interfacial reactions that would accelerate the fatigue of Si anodes. By simply incorporating graphene at the interface, we demonstrated significantly enhanced cycling stability for SiNW-based LIB anodes, with retentions of more than 2400 mAh/g specific charge capacity over 200 cycles, 2.7 times that of SiNWs on a bare current collector.

7.
Phys Chem Chem Phys ; 17(29): 19371-8, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26143888

RESUMO

The interaction strength of Au nanoparticles with pristine and nitrogen doped TiO2 nanowire surfaces was analysed using density functional theory and their significance in enhancing the solar driven photoelectrocatalytic properties was elucidated. In this article, we prepared 4-dimethylaminopyridine capped Au nanoparticle decorated TiO2 nanowire systems. The density functional theory calculations show {101} facets of TiO2 as the preferred phase for dimethylaminopyridine-Au nanoparticles anchoring with a binding energy of -8.282 kcal mol(-1). Besides, the interaction strength of Au nanoparticles was enhanced nearly four-fold (-35.559 kcal mol(-1)) at {101} facets via nitrogen doping, which indeed amplified the Au nanoparticle density on nitrided TiO2. The Au coated nitrogen doped TiO2 (N-TiO2-Au) hybrid electrodes show higher absorbance owing to the light scattering effect of Au nanoparticles. In addition, N-TiO2-Au hybrid electrodes block the charge leakage from the electrode to the electrolyte and thus reduce the charge recombination at the electrode/electrolyte interface. Despite the beneficial band narrowing effect of nitrogen in TiO2 on the electrochemical and visible light activity in N-TiO2-Au hybrid electrodes, it results in low photocurrent generation at higher Au NP loading (3.4 × 10(-7) M) due to light blocking the N-TiO2 surface. Strikingly, even with a ten-fold lower Au NP loading (0.34 × 10(-7) M), the synergistic effects of nitrogen doping and Au NPs on the N-TiO2-Au hybrid system yield high photocurrent compared to TiO2 and TiO2-Au electrodes. As a result, the N-TiO2-Au electrode produces nearly 270 µmol h(-1) cm(-2) hydrogen, which is nearly two-fold higher than the pristine TiO2 counterpart. The implications of these findings for the design of efficient hybrid photoelectrocatalytic electrodes are discussed.

8.
Phys Chem Chem Phys ; 16(33): 17930-5, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25046732

RESUMO

Si nanotubes for reversible alloying reaction with lithium are able to accommodate large volume changes and offer improved cycle retention and reliable response when incorporated into battery anodes. However, Si nanotube electrodes exhibit poor rate capability because of their inherently low electron conductivity and Li ion diffusivity. Si/Ge double-layered nanotube electrodes show promise to improve structural stability and electrochemical kinetics, as compared to homogeneous Si nanotube arrays. The mechanism explaining the enhancement in the rate capabilities is revealed here by means of electrochemical impedance methods. The Ge shell efficiently provides electrons to the active materials, which increase the semiconductor conductivity thereby assisting Li(+) ion incorporation. The charge transfer resistance which accounts for the interfacial Li(+) ion intake from the electrolyte is reduced by two orders of magnitude, indicating the key role of the Ge layer as an electron supplier. Other resistive processes hindering the electrode charge-discharge process are observed to show comparable values for Si and Si/Ge array electrodes.

9.
Phys Chem Chem Phys ; 16(33): 17748-55, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25030078

RESUMO

We demonstrate one-step gold nanoparticle (AuNP) coating and the surface nitridation of TiO2 nanowires (TiO2-NWs) to amplify visible-light photon reflection. The surface nitridation of TiO2-NW arrays maximizes the anchoring of AuNPs, and the subsequent reduction of the band gap energy from 3.26 eV to 2.69 eV affords visible-light activity. The finite-difference time-domain (FDTD) simulation method clearly exhibits the enhancement in the strengths of localized electric fields between AuNPs and the nanowires, which significantly improves the photocatalytic (PC) performance. Both nitridation and AuNP decoration of TiO2-NWs result in beneficial effects of high (e(-)/h(+)) pair separation through healing of the oxygen vacancies. The combined effect of harvesting visible-light photons and reducing recombination in Au/N-doped TiO2-NWs promotes the photocatalytic activity towards degradation of methyl orange to an unprecedented level, ∼4 fold (1.1 × 10(-2) min) more than does TiO2-NWs (2.9 × 10(-3) min(-1)). The proposed AuNP decoration of nitridated TiO2-NW surfaces can be applied to a wide range of n-type metal oxides for photoanodes in photocatalytic applications.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoporos/ultraestrutura , Nanofios/química , Titânio/química , Catálise/efeitos da radiação , Ouro/efeitos da radiação , Luz , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Nanofios/efeitos da radiação , Oxirredução/efeitos da radiação , Espalhamento de Radiação , Titânio/efeitos da radiação
10.
Nano Lett ; 13(7): 3340-6, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23750947

RESUMO

We propose a facile method for synthesizing a novel Si membrane structure with good mechanical strength and three-dimensional (3D) configuration that is capable of accommodating the large volume changes associated with lithiation in lithium ion battery applications. The membrane electrodes demonstrated a reversible charge capacity as high as 2414 mAh/g after 100 cycles at current density of 0.1 C, maintaining 82.3% of the initial charge capacity. Moreover, the membrane electrodes showed superiority in function at high current density, indicating a charge capacity >1220 mAh/g even at 8 C. The high performance of the Si membrane anode is assigned to their characteristic 3D features, which is further supported by mechanical simulation that revealed the evolution of strain distribution in the membrane during lithiation reaction. This study could provide a model system for rational and precise design of the structure and dimensions of Si membrane structures for use in high-performance lithium ion batteries.

11.
Angew Chem Int Ed Engl ; 53(46): 12590-3, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25124735

RESUMO

While the synthesis of TiO2 hollow structures is well-established, in most cases it is particularly difficult to control the crystallization of TiO2 in solution or by calcination. As a result, TiO2 hollow structures do not really exhibit enhanced lithium storage properties. Herein, we report a simple and cost-effective template-assisted method to synthesize anatase TiO2 hollow spheres composed of highly crystalline nanocrystals, in which carbonaceous (C) spheres are chosen as the removable template. The release of gaseous species from the combustion of C spheres may inhibit the growth of TiO2 crystallites so that instead small TiO2 nanocrystals are generated. The small size and high crystallinity of primary TiO2 nanoparticles and the high structural integrity of the hollow spheres gives rise to significant improvements in the cycling stability and rate performance of the TiO2 hollow spheres.


Assuntos
Lítio/química , Nanopartículas/química , Titânio/química , Cristalização , Fontes de Energia Elétrica , Nanopartículas/ultraestrutura , Nanotecnologia
12.
Analyst ; 138(17): 5025-30, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23820982

RESUMO

Robust composite nanofibers (NFs) are prerequisite for highly efficient electrochemical sensors. We report the electrochemical application of gold nanoparticle (Au NP)-composite Nafion NFs using a facile electrospinning technique. Owing to the uniform distribution and large surface area of the Au NPs in the NFs, the Au NP-composite electrodes gave rise to greatly improved electrochemical properties, compared to AuNP-free composite electrodes. When they were employed as reservoirs for immobilizing horseradish peroxidase (HRP), reliable and sensitive electrochemical detection by the enzyme reaction was achieved. The detection sensitivity for H2O2 was determined to be as low as 38 nM, which was one order higher than that of previous electrochemical sensors. In addition, there was no change in the enzyme stability over three weeks. In this regard, the developed NP/NF-based electrochemical sensors are anticipated to be very suitable for monitoring other enzyme reactions with high sensitivity and stability.


Assuntos
Técnicas Biossensoriais/métodos , Polímeros de Fluorcarboneto/química , Ouro/análise , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Nanofibras/química , Eletroquímica , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química
13.
Sci Rep ; 13(1): 22847, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129454

RESUMO

Silicon carbide (SiC) wafers have attracted attention as a material for advanced power semiconductor device applications due to their high bandgap and stability at high temperatures and voltages. However, the inherent chemical and mechanical stability of SiC poses significant challenges in the chemical mechanical planarization (CMP) process, an essential step in reducing defects and improving surface flatness. SiC exhibits different mechanical and chemical properties depending on SiC terminal faces, affecting SiC oxidation behavior during the CMP process. Here, we investigate the process of oxide layer formation during the CMP process and how it relates to the SiC terminal faces. The results show that under the same conditions, the C-terminated face (C-face) exhibits higher oxidation reaction kinetics than the Si-terminated face (Si-face), forming an oxide layer of finer particles. Due to the different oxidation kinetic tendencies, the oxide layer formed on the C-face has a higher friction coefficient and more defects than the oxide layer formed on the Si-face. This results in a higher removal rate during CMP for the C-face than the Si-face. Furthermore, by controlling the physicochemical properties of the oxide film, high removal rates can be achieved by friction with the pad alone, without the need for nanoparticle abrasives.

14.
ACS Appl Mater Interfaces ; 15(50): 58377-58387, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38079643

RESUMO

Alkaline water electrolysis is a vital technology for sustainable and efficient hydrogen production. However, the oxygen evolution reaction (OER) at the anode suffers from sluggish kinetics, requiring overpotential. Precious metal-based electrocatalysts are commonly used but face limitations in cost and availability. Carbon nanostructures, such as carbon nanotubes (CNTs), offer promising alternatives due to their abundant active sites and efficient charge-transfer properties. Surface modification of CNTs through techniques such as pulsed laser ablation in liquid media (PLAL) can enhance their catalytic performance. In this study, we investigate the role of surface-modified carbon (SMC) as a support to increase the active sites of transition metal-based electrocatalysts and its impact on electrocatalytic performance for the OER. We focus on Co3O4@SMC heterostructures, where an ultrathin layer of Co3O4 is deposited onto SMCs using a combination of PLAL and atomic layer deposition. A comparative analysis with aggregated Co3O4 and Co3O4@pristine CNTs reveals the superior OER performance of Co3O4@SMC. The optimized Co3O4@SMC exhibits a 25.6% reduction in overpotential, a lower Tafel slope, and a significantly higher turnover frequency (TOF) in alkaline water splitting. The experimental results, combined with density functional theory (DFT) calculations, indicate that these improvements can be attributed to the high electrocatalytic activity of Co3O4 as active sites achieved through the homogeneous distribution on SMCs. The experimental methodology, morphology, composition, and their correlation with activity and stability of Co3O4@SMC for the OER in alkaline media are discussed in detail. This study contributes to the understanding of SMC-based heterostructures and their potential for enhancing electrocatalytic performance in alkaline water electrolysis.

15.
Nat Commun ; 14(1): 354, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681684

RESUMO

Heteroatom-doping is a practical means to boost RuO2 for acidic oxygen evolution reaction (OER). However, a major drawback is conventional dopants have static electron redistribution. Here, we report that Re dopants in Re0.06Ru0.94O2 undergo a dynamic electron accepting-donating that adaptively boosts activity and stability, which is different from conventional dopants with static dopant electron redistribution. We show Re dopants during OER, (1) accept electrons at the on-site potential to activate Ru site, and (2) donate electrons back at large overpotential and prevent Ru dissolution. We confirm via in situ characterizations and first-principle computation that the dynamic electron-interaction between Re and Ru facilitates the adsorbate evolution mechanism and lowers adsorption energies for oxygen intermediates to boost activity and stability of Re0.06Ru0.94O2. We demonstrate a high mass activity of 500 A gcata.-1 (7811 A gRe-Ru-1) and a high stability number of S-number = 4.0 × 106 noxygen nRu-1 to outperform most electrocatalysts. We conclude that dynamic dopants can be used to boost activity and stability of active sites and therefore guide the design of adaptive electrocatalysts for clean energy conversions.


Assuntos
Rênio , Rutênio , Adsorção , Óxidos , Oxigênio
16.
Adv Mater ; 35(26): e2300091, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967600

RESUMO

Proton-exchange-membrane water electrolysis (PEMWE) requires an efficient and durable bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, Ir-based electrocatalyst is designed using the high entropy alloy (HEA) platform of ZnNiCoIrX with two elements (X: Fe and Mn). A facile dealloying in the vacuum system enables the construction of a nanoporous structure with high crystallinity using Zn as a sacrificial element. Especially, Mn incorporation into HEAs tailors the electronic structure of the Ir site, resulting in the d-band center being far away from the Fermi level. Downshifting of the d-band center weakens the adsorption energy with reaction intermediates, which is beneficial for catalytic reactions. Despite low Ir content, ZnNiCoIrMn delivers only 50 mV overpotential for HER at -50 mA cm-2 and 237 mV overpotential for the OER at 10 mA cm-2 . Furthermore, ZnNiCoIrMn shows almost constant voltage for the HER and OER for 100 h and a high stability number of 3.4 × 105 nhydrogen nIr -1 and 2.4 × 105 noxygen nIr -1 , demonstrating the exceptional durability of the HEA platform. The compositional engineering of ZnNiCoIrMn limits the diffusion of elements by high entropy effects and simultaneously tailors the electronic structure of active Ir sites, resulting in the modified cohesive and adsorption energies, all of which can suppress the dissolution of elements.

17.
Chem Commun (Camb) ; 58(70): 9834-9837, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35975752

RESUMO

The solvation sheath of Li+-glyme was modulated to enhance Li+-TFSI- association by adopting a highly polar solvent, especially water molecules, which affects the solid electrolyte interface (SEI) layer composition. By the Li+-TFSI- association, a TFSI- anion-derived SEI layer is formed on the Li metal anode, resulting in higher Li metal anode efficiency.

18.
Nano Lett ; 10(2): 584-91, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20067277

RESUMO

Nearly all research in micro- and nanofabrication focuses on the formation of solid structures of materials that perform some mechanical, electrical, optical, or related function. Fabricating patterns of charges, by contrast, is a much less well explored area that is of separate and growing interesting because the associated electric fields can be exploited to control the behavior of nanoscale electronic and mechanical devices, guide the assembly of nanomaterials, or modulate the properties of biological systems. This paper describes a versatile technique that uses fine, electrified liquid jets formed by electrohydrodynamics at micro- and nanoscale nozzles to print complex patterns of both positive and negative charges, with resolution that can extend into the submicrometer and nanometer regime. The reported results establish the basic aspects of this process and demonstrate the capabilities through printed patterns with diverse geometries and charge configurations in a variety of liquid inks, including suspensions of nanoparticles and nanowires. The use of printed charge to control the properties of silicon nanomembrane transistors provides an application example.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Ânions , Técnicas Biossensoriais , Cátions , Eletrônica , Desenho de Equipamento , Humanos , Teste de Materiais , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/química , Semicondutores , Silício/química
19.
Nano Lett ; 10(5): 1710-6, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20369889

RESUMO

Silicon is a promising candidate for electrodes in lithium ion batteries due to its large theoretical energy density. Poor capacity retention, caused by pulverization of Si during cycling, frustrates its practical application. We have developed a nanostructured form of silicon, consisting of arrays of sealed, tubular geometries that is capable of accommodating large volume changes associated with lithiation in battery applications. Such electrodes exhibit high initial Coulombic efficiencies (i.e., >85%) and stable capacity-retention (>80% after 50 cycles), due to an unusual, underlying mechanics that is dominated by free surfaces. This physics is manifested by a strongly anisotropic expansion in which 400% volumetric increases are accomplished with only relatively small (<35%) changes in the axial dimension. These experimental results and associated theoretical mechanics models demonstrate the extent to which nanoscale engineering of electrode geometry can be used to advantage in the design of rechargeable batteries with highly reversible capacity and long-term cycle stability.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Lítio/química , Nanotecnologia/instrumentação , Nanotubos/química , Nanotubos/ultraestrutura , Silício/química , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula
20.
Sci Rep ; 11(1): 21214, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707193

RESUMO

In this report, the galvanic corrosion inhibition between Cu and Ru metal films is studied, based on bonding orbital theory, using pyridinecarboxylic acid groups which show different affinities depending on the electron configuration of each metal resulting from a π-backbonding. The sp2 carbon atoms adjacent to nitrogen in the pyridine ring provide π-acceptor which forms a complex with filled d-orbital of native oxides on Cu and Ru metal film. The difference in the d-orbital electron density of each metal oxide leads to different π-backbonding strength, resulting in dense or sparse adsorption on native metal oxides. The dense adsorption layer is formed on native Cu oxide film due to the full-filled d-orbital electrons, which effectively suppresses anodic reaction in Cu film. On the other hand, only a sparse adsorption layer is formed on native Ru oxide due to its relatively weak affinity between partially filled d-orbital and pyridine groups. The adsorption behaviour is investigated through interfacial interaction analysis and electrochemical interaction evaluation. Based on this finding, the galvanic corrosion behaviour between Cu and Ru during chemical mechanical planarization (CMP) processing has been controlled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA