Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 278: 116412, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691879

RESUMO

BACKGROUND: Bisphenol A (BPA) is an industrial chemical that is commonly found in daily consumer products. BPA is reportedly associated with lung diseases. However, the impact of BPA on pulmonary fibrosis (PF) and its possible mechanisms of action both remain unclear. METHODS: A PF mouse model was induced by bleomycin (BLM). Mouse lung fibroblasts (MLG 2908) and mouse alveolar epithelial cells (MLE-12) were treated with BPA to establish a PF cell model. Tissue staining, CCK-8 assays, western blot experiments and relevant indicator kits were used to detect and evaluate the effect of BPA on PF. RESULTS: BPA dose-dependently promoted oxidative stress and induced ferroptosis, leading to PF. The ferroptosis inhibitor Fer-1 partly attenuated the effect of BPA. In addition, among the two main cell types associated with the progression of PF, MLE-12 cells are more sensitive to BPA than are MLG 2908 cells, and BPA induces ferroptosis in MLE-12 cells. Furthermore, BPA promoted autophagy-mediated ferroptosis by activating the AMPK/mTOR signaling pathway, thereby exacerbating the progression of PF. The autophagy inhibitor CQ1 partly attenuated the effect of BPA. CONCLUSION: BPA promotes the progression of PF by promoting autophagy-dependent ferroptosis in alveolar epithelial cells, which provides a new theoretical basis for understanding BPA-induced PF.


Assuntos
Células Epiteliais Alveolares , Autofagia , Compostos Benzidrílicos , Ferroptose , Fenóis , Fibrose Pulmonar , Animais , Ferroptose/efeitos dos fármacos , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Camundongos , Autofagia/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Bleomicina/toxicidade , Linhagem Celular , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 116(12): 5362-5369, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30837316

RESUMO

Lipid nanovesicles are widely present as transport vehicles in living organisms and can serve as efficient drug delivery vectors. It is known that the size and surface charge of nanovesicles can affect their diffusion behaviors in biological hydrogels such as mucus. However, how temperature effects, including those of both ambient temperature and phase transition temperature (Tm), influence vehicle transport across various biological barriers outside and inside the cell remains unclear. Here, we utilize a series of liposomes with different Tm as typical models of nanovesicles to examine their diffusion behavior in vitro in biological hydrogels. We observe that the liposomes gain optimal diffusivity when their Tm is around the ambient temperature, which signals a drastic change in the nanovesicle rigidity, and that liposomes with Tm around body temperature (i.e., ∼37 °C) exhibit enhanced cellular uptake in mucus-secreting epithelium and show significant improvement in oral insulin delivery efficacy in diabetic rats compared with those with higher or lower Tm Molecular-dynamics (MD) simulations and superresolution microscopy reveal a temperature- and rigidity-mediated rapid transport mechanism in which the liposomes frequently deform into an ellipsoidal shape near the phase transition temperature during diffusion in biological hydrogels. These findings enhance our understanding of the effect of temperature and rigidity on extracellular and intracellular functions of nanovesicles such as endosomes, exosomes, and argosomes, and suggest that matching Tm to ambient temperature could be a feasible way to design highly efficient nanovesicle-based drug delivery vectors.


Assuntos
Hidrogéis/administração & dosagem , Hidrogéis/química , Lipídeos/química , Nanopartículas/química , Animais , Transporte Biológico/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Difusão/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Epitélio/metabolismo , Insulina/administração & dosagem , Insulina/química , Lipossomos/química , Masculino , Transição de Fase/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Temperatura
3.
Acta Pharm Sin B ; 9(4): 858-870, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31384544

RESUMO

Recently, liposomes have been widely used in cancer therapeutics, but their anti-tumor effects are suboptimal due to limited tumor penetration. To solve this problem, researchers have made significant efforts to optimize liposomal diameters and potentials, but little attention has been paid to liposomal membrane rigidity. Herein, we sought to demonstrate the effects of cholesterol-tuned liposomal membrane rigidity on tumor penetration and anti-tumor effects. In this study, liposomes composed of hydrogenated soybean phospholipids (HSPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) and different concentrations of cholesterol were prepared. It was revealed that liposomal membrane rigidity decreased with the addition of cholesterol. Moderate cholesterol content conferred excellent diffusivity to liposomes in simulated diffusion medium, while excessive cholesterol limited the diffusion process. We concluded that the differences of the diffusion rates likely stemmed from the alterations in liposomal membrane rigidity, with moderate rigidity leading to improved diffusion. Next, the in vitro tumor penetration and the in vivo anti-tumor effects were analyzed. The results showed that liposomes with moderate rigidity gained excellent tumor penetration and enhanced anti-tumor effects. These findings illustrate a feasible and effective way to improve tumor penetration and therapeutic efficacy of liposomes by changing the cholesterol content, and highlight the importance of liposomal membrane rigidity.

4.
ACS Nano ; 13(7): 7676-7689, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31187973

RESUMO

Small unilamellar vesicles (SUVs), ubiquitous in organisms, play key and active roles in various biological processes. Although the physical properties of the constituent lipid molecules (i.e., the acyl chain length and saturation) are known to affect the mechanical properties of SUVs and consequently regulate their biological behaviors and functions, the underlying mechanism remains elusive. Here, we combined theoretical modeling and experimental investigation to probe the mechanical behaviors of SUVs with different lipid compositions. The membrane bending rigidity of SUVs increased with increasing chain length and saturation, resulting in differences in the vesicle rigidity and deformable capacity. Furthermore, we tested the tumor delivery capacity of liposomes with low, intermediate, and high rigidity as typical models for SUVs. Interestingly, liposomes with intermediate rigidity exhibited better tumor extracellular matrix diffusion and multicellular spheroid (MCS) penetration and retention than that of their stiffer or softer counterparts, contributing to improved tumor suppression. Stiff SUVs had superior cellular internalization capacity but intermediate tumor delivery efficacy. Stimulated emission depletion microscopy directly showed that the optimal formulation was able to transform to a rod-like shape in MCSs, which stimulated fast transport in tumor tissues. In contrast, stiff liposomes hardly deformed, whereas soft liposomes changed their shape irregularly, which slowed their MCS penetration. Our findings introduce special perspectives from which to map the detailed mechanical properties of SUVs with different compositions, provide clues for understanding the biological functions of SUVs, and suggest that liposome mechanics may be a design parameter for enhancing drug delivery.


Assuntos
Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico , Estresse Mecânico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Camptotecina/química , Camptotecina/farmacologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos/sangue , Lipossomos/síntese química , Lipossomos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Imagem Óptica , Neoplasias Pancreáticas/patologia , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
5.
Asian J Pharm Sci ; 13(4): 326-335, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32104406

RESUMO

Self-nanoemulsifying systems (SNEs) have excellent ability to improve the solubility of poorly water-soluble drugs (PWSD). However, SNEs are likely to be degraded in gastrointestinal (GIT) when their surface is recognized by lipase/co-lipase enzyme complex, resulting in rapid release and precipitation of encapsulated drugs. The precipitates are then captured and removed by intestinal mucus, reducing the delivery efficacy of SNEs. Herein, the amphiphilic polymer Pluronic® F127 was incorporated into long and short-chain triglycerides (LCT, SCT) based SNEs to diminish the recognition and therefore minimized their degradation by enzymes and clearance by mucus. The SNEs were characterized in terms of particle size, zeta potential and stability. Ex vivo multiple particles tracking studies were performed by adding particle solution into fresh rat mucus. Cellular uptake of SNEs were conducted by using E12 cells, the absorption and distribution in small intestine were also studied after oral administration in male Sprague-Dawley (SD) rats. The in vitro digestion rate of SNEs were found to be in following order SCT-SNE > SCT-F127-SNE > LCT-SNE > LCT-F127-SNE. Moreover, the LCT-F127-SNE was found to be most effective in enhancing cellular uptake, resulting in 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. After incubating the SNE with E12 cells, the LCT-F127-SNE exhibited the highest amount regarding both mucus penetration and cellular uptake, with an uptake amount number (via bicinchoninic acid (BCA) analysis) of 3.5-fold, 2.1-fold and 1.7-fold higher than that of SCT-SNE, LCT-SNE and SCT-F127-SNE, respectively. The in vivo results revealed that orally administered LCT-F127-SNE could significantly increase the bioavailability of Cyclosporine A (CsA), which was approximately 2.43-fold, 1.33-fold and 1.80-fold higher than that of SCT-SNE, SCT-F127-SNE and LCT-SNE, respectively. We address in this work that F127-modified SNEs have potentials to improve oral drug absorption by significantly reducing gastrointestinal enzymatic degradation and simultaneously enhancing mucus penetration.

6.
J Mater Chem B ; 3(43): 8508-8517, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262691

RESUMO

Poor permeability of the intestinal epithelium limits the oral absorption of many drugs. Here, a poly-l-glutamic acid (PGA)-based functional ternary nanocomplex (TC) is reported for enhancing the intestinal absorption of poorly permeable drug doxorubicin hydrochloride (Dox·HCl). The particle size and zeta potential of TC were 189.3 ± 13.7 nm and -29.1 ± 7.4 mV, respectively. The TC was shown to be more stable under simulated gastrointestinal changing pH or electrolyte content conditions than the binary nanocomplex Dox·HCl/PGA. Cellular uptake and the apparent permeability coefficient value (Papp) of the TC were determined to be 5.2- and 4.6-fold higher than that of Dox·HCl solutions, respectively. Mechanistic studies showed that active endocytosis caused by specific interactions between γ-glutamyl terminal groups of PGA and membrane-bound γ-glutamyl transferase contributed much to the TC-dependent Dox·HCl absorption. Studies on the rat model also demonstrated the highest efficiency for Dox·HCl absorption by the TC throughout the intestinal tract, with 2.6- and 4.2-fold higher Cmax and AUC0-24h values compared to Dox·HCl solutions. In conclusion, the TC is a promising carrier for improving Dox·HCl intestinal absorption, and the rational design of carriers with functional polymer PGA could implement the efficient active absorption of poorly permeable drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA