Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytother Res ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120263

RESUMO

Women go through several predictable conditions and symptoms during menopause that are caused by age, changes in sex hormone levels, and other factors. Conventional menopause hormone therapy has raised serious concerns about the increased risks of cancers, blood clots, depression, etc. Selective estrogen receptor modulators (SERMs) that can be both agonists and antagonists of estrogen receptors in a tissue-specific manner are being developed to reduce the health concerns associated with menopause hormone therapy. Here, we have searched the Chinese national traditional Chinese medicine (TCM) patent database to identify potential SERM-like compounds with reduced health risks. TCM has been widely used for treating complex symptoms associated with menopause syndrome and thus can be a particularly rich source for pharmaceutical alternatives with SERM properties. After extensive literature review and molecular simulation, we conclude that protopanaxatriol, paeoniflorin, astragalin, catalpol, and hyperoside among others may be particularly promising as SERM-like compounds in treating the menopausal syndrome. Compounds in TCM hold promise in yielding comparable outcomes to hormone therapy but with reduced associated risks, thus presenting promising avenues for their clinical applications.

2.
ACS Appl Mater Interfaces ; 16(30): 39330-39340, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39016552

RESUMO

Binders are crucial for maintaining the mechanical stability of the electrodes. However, traditional binders fail to adequately buffer the volume expansion of Zn2SiO4 anode, causing electrode contact failure and considerable capacity loss during cycling. In this study, we propose a simple and effective solution to address these challenges through a combined strategy of hollow structure design and the introduction of an aqueous lithium poly(acrylic acid) (LiPAA) binder. Hollow structures can shorten ion-transfer distance and accommodate volume change outside. The excellent adhesion of the LiPAA binder created a secure connection between the active Zn2SiO4 particles, conductive additives, and the current collector, which enhanced the mechanical stability and integrity of the electrode. As a result of these positive factors, a Zn2SiO4 electrode using LiPAA as a binder can deliver an excellent capacity of 499 mAh g-1 at a high current density of 5 A g-1 and a long life span of 1000 cycles at 1 A g-1 with a capacity retention of 98%, which significantly outperforms other binders. As demonstrated by ex situ X-ray diffraction and ex situ X-ray absorption spectroscopy, the storage of lithium ions in Zn2SiO4 follows a dual conversion-alloying mechanism, using Zn as the redox center. In this process, Zn is first reduced to metallic Zn and then forms a LiZn alloy upon lithium-ion insertion. This work shows that LiPAA offers a promising approach to improve the cycling longevity of conversion and alloying anodes in Li-ion batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA