Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(15): e2201632119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380903

RESUMO

Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug­drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical­genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo­relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical­genetic­environmental interactions that can be used to optimize drug­drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.


Assuntos
Antituberculosos , Carbono , Parede Celular , Interações Medicamentosas , Interação Gene-Ambiente , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Carbono/metabolismo , Parede Celular/ultraestrutura , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura
2.
J Bacteriol ; 206(6): e0005224, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38819154

RESUMO

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function, and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations, they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the YS deletion mutants results from distinct enzymatic vulnerabilities.IMPORTANCEBacteria require multiple trace metal ions for survival. Metal homeostasis relies on the tightly regulated expression of metal uptake, storage, and efflux proteins. Metal intoxication occurs when metal homeostasis is perturbed and often results from enzyme mis-metalation. In Bacillus subtilis, Mn-dependent superoxide dismutase (MnSOD) is the most abundant Mn-containing protein and is important for oxidative stress resistance. Here, we report novel roles for MnSOD and a co-regulated membrane protein, YqgC, in Mn homeostasis. Loss of both MnSOD and YqgC (but not the individual proteins) prevents the efficient expression of Mn efflux proteins and leads to a large-scale perturbation of the metabolome due to inhibition of Mg-dependent enzymes, including key chorismate-utilizing MST (menaquinone, siderophore, and tryptophan) family enzymes.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Magnésio , Manganês , Óperon , Superóxido Dismutase , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Manganês/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Magnésio/metabolismo
3.
Biochem J ; 480(15): 1147-1164, 2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37498748

RESUMO

Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.


Assuntos
Peptidoglicano , UDPglucose-Hexose-1-Fosfato Uridiltransferase , Glucosamina/metabolismo , Fosfatos , Difosfato de Uridina
4.
Mol Biol Rep ; 49(10): 9903-9913, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35759082

RESUMO

The immune system interacts with cancer cells in multiple intricate ways that can shield the host against hyper-proliferation but can also contribute to malignancy. Understanding the protective roles of the immune system in its interaction with cancer cells can help device new and alternate therapeutic strategies. Many immunotherapeutic methodologies, including adaptive cancer therapy, cancer peptide vaccines, monoclonal antibodies, and immune checkpoint treatment, have transformed the traditional cancer treatment landscape. However, many questions remain unaddressed. The development of personalized combination therapy and neoantigen-based cancer vaccines would be the avant-garde approach to cancer treatment. Desirable chemotherapy should be durable, safe, and target-specific. Managing both tumor (intrinsic factors) and its microenvironment (extrinsic factors) are critical for successful immunotherapy. This review describes current approaches and their advancement related to monoclonal antibody-related clinical trials, new cytokine therapy, a checkpoint inhibitor, adoptive T cell therapy, cancer vaccine, and oncolytic virus.


Assuntos
Vacinas Anticâncer , Neoplasias , Anticorpos Monoclonais/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Citocinas , Humanos , Fatores Imunológicos , Imunoterapia/métodos , Imunoterapia Adotiva , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
Biochem J ; 478(11): 2081-2099, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33955473

RESUMO

N-acetyl glucosamine-1-phosphate uridyltransferase (GlmU) is a bifunctional enzyme involved in the biosynthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is a critical precursor for the synthesis of peptidoglycan and other cell wall components. The absence of a homolog in eukaryotes makes GlmU an attractive target for therapeutic intervention. Mycobacterium tuberculosis GlmU (GlmUMt) has features, such as a C-terminal extension, that are not present in GlmUorthologs from other bacteria. Here, we set out to determine the uniqueness of GlmUMt by performing in vivo complementation experiments using RvΔglmU mutant. We find that any deletion of the carboxy-terminal extension region of GlmUMt abolishes its ability to complement the function of GlmUMt. Results show orthologs of GlmU, including its closest ortholog, from Mycobacterium smegmatis, cannot complement the function of GlmUMt. Furthermore, the co-expression of GlmUMt domain deletion mutants with either acetyl or uridyltransferase activities failed to rescue the function. However, co-expression of GlmUMt point mutants with either acetyl or uridyltransferase activities successfully restored the biological function of GlmUMt, likely due to the formation of heterotrimers. Based on the interactome experiments, we speculate that GlmUMt participates in unique interactions essential for its in vivo function.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Complexos Multienzimáticos/metabolismo , Mutação , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , UDPglucose-Hexose-1-Fosfato Uridiltransferase/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Conformação Proteica , Domínios Proteicos , UDPglucose-Hexose-1-Fosfato Uridiltransferase/química , UDPglucose-Hexose-1-Fosfato Uridiltransferase/genética
6.
Proc Natl Acad Sci U S A ; 116(39): 19646-19651, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31501323

RESUMO

Combination chemotherapy can increase treatment efficacy and suppress drug resistance. Knowledge of how to engineer rational, mechanism-based drug combinations, however, remains lacking. Although studies of drug activity have historically focused on the primary drug-target interaction, growing evidence has emphasized the importance of the subsequent consequences of this interaction. Bedaquiline (BDQ) is the first new drug for tuberculosis (TB) approved in more than 40 y, and a species-selective inhibitor of the Mycobacterium tuberculosis (Mtb) ATP synthase. Curiously, BDQ-mediated killing of Mtb lags significantly behind its inhibition of ATP synthase, indicating a mode of action more complex than the isolated reduction of ATP pools. Here, we report that BDQ-mediated inhibition of Mtb's ATP synthase triggers a complex metabolic response indicative of a specific hierarchy of ATP-dependent reactions. We identify glutamine synthetase (GS) as an enzyme whose activity is most responsive to changes in ATP levels. Chemical supplementation with exogenous glutamine failed to affect BDQ's antimycobacterial activity. However, further inhibition of Mtb's GS synergized with and accelerated the onset of BDQ-mediated killing, identifying Mtb's glutamine synthetase as a collateral, rather than directly antimycobacterial, metabolic vulnerability of BDQ. These findings reveal a previously unappreciated physiologic specificity of ATP and a facet of mode-of-action biology we term collateral vulnerability, knowledge of which has the potential to inform the development of rational, mechanism-based drug combinations.


Assuntos
Diarilquinolinas/farmacologia , Glutamato-Amônia Ligase/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Diarilquinolinas/metabolismo , Glutamato-Amônia Ligase/metabolismo , Testes de Sensibilidade Microbiana/métodos , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia
8.
Bioconjug Chem ; 30(3): 721-732, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30669829

RESUMO

A major impediment to developing effective antimicrobials against Gram-negative bacteria like Salmonella is the ability of the bacteria to develop resistance against existing antibiotics and the inability of the antimicrobials to clear the intracellular bacteria residing in the gastrointestinal tract. As the critical balance of charge and hydrophobicity is required for effective membrane-targeting antimicrobials without causing any toxicity to mammalian cells, herein we report the synthesis and antibacterial properties of cholic acid-derived amphiphiles conjugated with alkyl chains of varied hydrophobicity. Relative to other hydrophobic counterparts, a compound with hexyl chain (6) acted as an effective antimicrobial against different Gram-negative bacteria. Apart from its ability to permeate the outer and inner membranes of bacteria; compound 6 can cross the cellular and lysosomal barriers of epithelial cells and macrophages and kill the facultative intracellular bacteria without disrupting the mammalian cell membranes. Oral delivery of compound 6 was able to clear the Salmonella-mediated gut infection and inflammation, and was able to combat persistent, stationary, and multi-drug-resistant clinical strains. Therefore, our study reveals the ability of cholic acid-derived amphiphiles to clear intracellular bacteria and Salmonella-mediated gut infection and inflammation.


Assuntos
Antibacterianos/administração & dosagem , Ácido Cólico/administração & dosagem , Inflamação/prevenção & controle , Enteropatias/prevenção & controle , Infecções por Salmonella/prevenção & controle , Administração Oral , Animais , Farmacorresistência Bacteriana Múltipla , Enteropatias/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Salmonella/isolamento & purificação , Salmonella/patogenicidade
9.
PLoS Pathog ; 11(10): e1005235, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26489015

RESUMO

M. tuberculosis N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmUMtb) is a bi-functional enzyme engaged in the synthesis of two metabolic intermediates N-acetylglucosamine-1-phosphate (GlcNAc-1-P) and UDP-GlcNAc, catalyzed by the C- and N-terminal domains respectively. UDP-GlcNAc is a key metabolite essential for the synthesis of peptidoglycan, disaccharide linker, arabinogalactan and mycothiols. While glmUMtb was predicted to be an essential gene, till date the role of GlmUMtb in modulating the in vitro growth of Mtb or its role in survival of pathogen ex vivo / in vivo have not been deciphered. Here we present the results of a comprehensive study dissecting the role of GlmUMtb in arbitrating the survival of the pathogen both in vitro and in vivo. We find that absence of GlmUMtb leads to extensive perturbation of bacterial morphology and substantial reduction in cell wall thickness under normoxic as well as hypoxic conditions. Complementation studies show that the acetyl- and uridyl- transferase activities of GlmUMtb are independently essential for bacterial survival in vitro, and GlmUMtb is also found to be essential for mycobacterial survival in THP-1 cells as well as in guinea pigs. Depletion of GlmUMtb from infected murine lungs, four weeks post infection, led to significant reduction in the bacillary load. The administration of Oxa33, a novel oxazolidine derivative that specifically inhibits GlmUMtb, to infected mice resulted in significant decrease in the bacillary load. Thus our study establishes GlmUMtb as a strong candidate for intervention measures against established tuberculosis infections.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Complexos Multienzimáticos/antagonistas & inibidores , Mycobacterium tuberculosis , Tuberculose/metabolismo , Animais , Compostos de Benzilideno/farmacologia , Western Blotting , Modelos Animais de Doenças , Cobaias , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Naftalenos/farmacologia , Oxazóis/farmacologia
10.
Bioorg Med Chem ; 22(21): 5970-87, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288496

RESUMO

The gyraseB subunit of Staphylococcus aureus DNA gyrase is a well-established and validated target though less explored for the development of novel antimicrobial agents. Starting from the available structural information in PDB (3TTZ), we identified a novel series of benzimidazole used as inhibitors of DNA gyraseB with low micromolar inhibitory activity by employing structure-based drug design strategy. Subsequently, this chemical class of DNA gyrase inhibitors was extensively investigated biologically through in vitro assays, biofilm inhibition assays, cytotoxicity, and in vivo studies. The binding affinity of the most potent inhibitor 10 was further ascertained biophysically through differential scanning fluorimetry. Further, the most potent analogues did not show any signs of cardiotoxicity in Zebra fish ether-a-go-go-related gene (zERG), a major breakthrough among the previously reported cardiotoxic gyraseB inhibitors.


Assuntos
Antibacterianos/química , Benzimidazóis/química , DNA Girase/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/enzimologia , Inibidores da Topoisomerase II/química , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , DNA Girase/química , Feminino , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Peixe-Zebra
11.
Metabolites ; 14(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38248866

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge, further compounded by the issue of antimicrobial resistance (AMR). AMR is a result of several system-level molecular rearrangements enabling bacteria to evolve with better survival capacities: metabolic rewiring is one of them. In this review, we present a detailed analysis of the metabolic rewiring of Mtb in response to anti-TB drugs and elucidate the dynamic mechanisms of bacterial metabolism contributing to drug efficacy and resistance. We have discussed the current state of AMR, its role in the prevalence of the disease, and the limitations of current anti-TB drug regimens. Further, the concept of metabolic rewiring is defined, underscoring its relevance in understanding drug resistance and the biotransformation of drugs by Mtb. The review proceeds to discuss the metabolic adaptations of Mtb to drug treatment, and the pleiotropic effects of anti-TB drugs on Mtb metabolism. Next, the association between metabolic changes and antimycobacterial resistance, including intrinsic and acquired drug resistance, is discussed. The review concludes by summarizing the challenges of anti-TB treatment from a metabolic viewpoint, justifying the need for this discussion in the context of novel drug discovery, repositioning, and repurposing to control AMR in TB.

12.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405924

RESUMO

Microbes encounter a myriad of stresses during their life cycle. Dysregulation of metal ion homeostasis is increasingly recognized as a key factor in host-microbe interactions. Bacterial metal ion homeostasis is tightly regulated by dedicated metalloregulators that control uptake, sequestration, trafficking, and efflux. Here, we demonstrate that deletion of the Bacillus subtilis yqgC-sodA (YS) complex operon, but not deletion of the individual genes, causes hypersensitivity to manganese (Mn). YqgC is an integral membrane protein of unknown function and SodA is a Mn-dependent superoxide dismutase (MnSOD). The YS strain has reduced expression of two Mn efflux proteins, MneP and MneS, consistent with the observed Mn sensitivity. The YS strain accumulated high levels of Mn, had increased reactive radical species (RRS), and had broad metabolic alterations that can be partially explained by the inhibition of Mg-dependent enzymes. Although the YS operon deletion strain and an efflux-deficient mneP mneS double mutant both accumulate Mn and have similar metabolic perturbations they also display phenotypic differences. Several mutations that suppressed Mn intoxication of the mneP mneS efflux mutant did not benefit the YS mutant. Further, Mn intoxication in the YS mutant, but not the mneP mneS strain, was alleviated by expression of Mg-dependent, chorismate-utilizing enzymes of the menaquinone, siderophore, and tryptophan (MST) family. Therefore, despite their phenotypic similarities, the Mn sensitivity in the mneP mneS and the yqgC-sodA deletion mutants results from distinct enzymatic vulnerabilities.

13.
Sci Total Environ ; : 174804, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019282

RESUMO

Black carbon (BC) is emitted into the atmosphere during combustion processes, often in conjunction with emissions such as Nitrogen oxides (NOx) and Ozone (O3), which are also by-products of combustion. In highly polluted regions, combustion processes are one of the main sources of aerosols and particulate matter (PM) concentrations, which affect the radiative budget. Despite the high relevance of this air pollution metric, BC monitoring is quite expensive in terms of instrumentation and of maintenance and servicing. With the aim to provide tools to estimate BC while minimising instrumentation costs, we use machine learning approaches to estimate BC from air pollution and meteorological parameters (NOx, O3, PM2.5, relative humidity (RH), and solar radiation (SR)) from currently available networks. We assess the effectiveness of various machine learning models, such as random forest (RF), support vector regression (SVR), and multilayer perceptron (MLP) artificial neural network, for predicting black carbon (BC) mass concentrations in areas with high BC levels such as Northern Indian cities (Delhi and Agra), across different seasons. The results demonstrate comparable effectiveness among the models, with the multilayer perceptron (MLP) showing the most promising results. In addition, the comparability between estimated and monitored BC concentrations was high. In Delhi, the MLP shows high correlations between measured and modelled concentrations during winter (R2: 0.85) and post-monsoon (R2: 0.83) seasons, and notable metrics in the pre-monsoon (R2: 0.72). The results from Agra are consistent with those from Delhi, highlighting the consistency of the neural network's performance. These results highlight the usefulness of machine learning, particularly MLP, as a valuable tool for predicting BC concentrations. This approach provides critical new opportunities for urban air quality management and mitigation strategies and may be especially valuable for megacities in medium- and low-income regions.

14.
J Biol Chem ; 287(47): 39524-37, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22969087

RESUMO

N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU), a bifunctional enzyme involved in bacterial cell wall synthesis is exclusive to prokaryotes. GlmU, now recognized as a promising target to develop new antibacterial drugs, catalyzes two key reactions: acetyl transfer and uridyl transfer at two independent domains. Hitherto, we identified GlmU from Mycobacterium tuberculosis (GlmU(Mtb)) to be unique in possessing a 30-residue extension at the C terminus. Here, we present the crystal structures of GlmU(Mtb) in complex with substrates/products bound at the acetyltransferase active site. Analysis of these and mutational data, allow us to infer a catalytic mechanism operative in GlmU(Mtb). In this S(N)2 reaction, His-374 and Asn-397 act as catalytic residues by enhancing the nucleophilicity of the attacking amino group of glucosamine 1-phosphate. Ser-416 and Trp-460 provide important interactions for substrate binding. A short helix at the C-terminal extension uniquely found in mycobacterial GlmU provides the highly conserved Trp-460 for substrate binding. Importantly, the structures reveal an uncommon mode of acetyl-CoA binding in GlmU(Mtb); we term this the U conformation, which is distinct from the L conformation seen in the available non-mycobacterial GlmU structures. Residues, likely determining U/L conformation, were identified, and their importance was evaluated. In addition, we identified that the primary site for PknB-mediated phosphorylation is Thr-418, near the acetyltransferase active site. Down-regulation of acetyltransferase activity upon Thr-418 phosphorylation is rationalized by the structures presented here. Overall, this work provides an insight into substrate recognition, catalytic mechanism for acetyl transfer, and features unique to GlmU(Mtb), which may be exploited for the development of inhibitors specific to GlmU.


Assuntos
Acetilcoenzima A/química , Acetiltransferases/química , Proteínas de Bactérias/química , Complexos Multienzimáticos/química , Mycobacterium tuberculosis/enzimologia , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/genética , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
15.
mBio ; 14(2): e0316822, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36779708

RESUMO

Bacteria can adapt to stressful conditions through mutations affecting the RNA polymerase core subunits that lead to beneficial changes in transcription. In response to selection with rifampicin (RIF), mutations arise in the RIF resistance-determining region (RRDR) of rpoB that reduce antibiotic binding. These changes can also alter transcription and thereby have pleiotropic effects on bacterial fitness. Here, we studied the evolution of resistance in Bacillus subtilis to the synergistic combination of RIF and the ß-lactam cefuroxime (CEF). Two independent evolution experiments led to the recovery of a single rpoB allele (S487L) that was able to confer resistance to RIF and CEF through a single mutation. Two other common RRDR mutations made the cells 32 times more sensitive to CEF (H482Y) or led to only modest CEF resistance (Q469R). The diverse effects of these three mutations on CEF resistance are correlated with differences in the expression of peptidoglycan (PG) synthesis genes and in the levels of two metabolites crucial in regulating PG synthesis, glucosamine-6-phosphate (GlcN-6-P) and UDP-N-acetylglucosamine (UDP-GlcNAc). We conclude that RRDR mutations can have widely varying effects on pathways important for cell wall biosynthesis, and this may restrict the spectrum of mutations that arise during combination therapy. IMPORTANCE Rifampicin (RIF) is one of the most valued drugs in the treatment of tuberculosis. TB treatment relies on a combination therapy and for multidrug-resistant strains may include ß-lactams. Mutations in rpoB present a common route for emergence of resistance to RIF. In this study, using B. subtilis as a model, we evaluate the emergence of resistance for the synergistic combination of RIF and the ß-lactam cefuroxime (CEF). One clinically relevant rpoB mutation conferred resistance to both RIF and CEF, whereas one other increased CEF sensitivity. We were able to link these CEF sensitivity phenotypes to accumulation of UDP-N-acetylglucosamine (UDP-GlcNAc), which feedback regulates GlmS activity and thereby peptidoglycan synthesis. Further, we found that higher CEF concentrations precluded the emergence of high RIF resistance. Collectively, these results suggest that multidrug treatment regimens may limit the available pathways for the evolution of antibiotic resistance.


Assuntos
Mycobacterium tuberculosis , Rifampina , Rifampina/farmacologia , Rifampina/uso terapêutico , Peptidoglicano/genética , beta-Lactamas/farmacologia , Cefuroxima/farmacologia , Acetilglucosamina , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana/genética , Mutação , Difosfato de Uridina , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia
16.
Vaccines (Basel) ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37631870

RESUMO

Mycobacterium smegmatis (M.sm) is frequently used as an alternative model organism in Mycobacterium tuberculosis (M.tb) studies. While containing high sequence homology with M.tb, it is considered non-pathogenic in humans. As such it has been used to study M.tb and other infections in vivo and more recently been explored for potential therapeutic applications. A body of previous research has highlighted the potential of using genetically modified M.sm displaying rapid growth and unique immunostimulatory characteristics as an effective vaccine vector. Novel systems biology techniques can further serve to optimize these delivery constructs. In this article, we review recent advancements in vaccinomics tools that support the efficacy of a M.sm-based vaccine vector. Moreover, the integration of systems biology and molecular omics techniques in these pioneering studies heralds a potential accelerated pipeline for the development of next-generation recombinant vaccines against rapidly developing diseases.

17.
Integr Environ Assess Manag ; 19(2): 326-354, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35678199

RESUMO

Fluoropolymers are a distinct class of per- and polyfluoroalkyl substances (PFAS), high molecular weight (MW) polymers with fluorine attached to their carbon-only backbone. Fluoropolymers possess a unique combination of properties and unmatched functional performance critical to the products and manufacturing processes they enable and are irreplaceable in many uses. Fluoropolymers have documented safety profiles; are thermally, biologically, and chemically stable, negligibly soluble in water, nonmobile, nonbioavailable, nonbioaccumulative, and nontoxic. Although fluoropolymers fit the PFAS structural definition, they have very different physical, chemical, environmental, and toxicological properties when compared with other PFAS. This study describes the composition, uses, performance properties, and functionalities of 14 fluoropolymers, including fluoroplastics and fluoroelastomers, and presents data to demonstrate that they satisfy the widely accepted polymer hazard assessment criteria to be considered polymers of low concern (PLC). The PLC criteria include physicochemical properties, such as molecular weight, which determine bioavailability and warn of potential hazard. Fluoropolymers are insoluble (e.g., water, octanol) solids too large to migrate into the cell membrane making them nonbioavailable, and therefore, of low concern from a human and environmental health standpoint. Further, the study results demonstrate that fluoropolymers are a distinct and different group of PFAS and should not be grouped with other PFAS for hazard assessment or regulatory purposes. When combined with an earlier publication by Henry et al., this study demonstrates that commercial fluoropolymers are available from the seven participating companies that meet the criteria to be considered PLC, which represent approximately 96% of the global commercial fluoropolymer market. Integr Environ Assess Manag 2023;19:326-354. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Polímeros de Fluorcarboneto , Fluorocarbonos , Humanos , Polímeros de Fluorcarboneto/toxicidade , Polímeros , Ecotoxicologia/métodos , Saúde Ambiental , Água , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Medição de Risco/métodos
18.
Vaccines (Basel) ; 10(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35746487

RESUMO

The field of immunotherapy has undergone radical conceptual changes over the last decade. There are various examples of immunotherapy, including the use of monoclonal antibodies, cancer vaccines, tumor-infecting viruses, cytokines, adjuvants, and autologous T cells carrying chimeric antigen receptors (CARs) that can bind cancer-specific antigens known as adoptive immunotherapy. While a lot has been achieved in the field of T-cell immunotherapy, only a fraction of patients (20%) see lasting benefits from this mode of treatment, which is why there is a critical need to turn our attention to other immune cells. B cells have been shown to play both anti- and pro-tumorigenic roles in tumor tissue. In this review, we shed light on the dual nature of B cells in the tumor microenvironment. Furthermore, we discussed the different factors affecting the biology and function of B cells in tumors. In the third section, we described B-cell-based immunotherapies and their clinical applications and challenges. These current studies provide a springboard for carrying out future mechanistic studies to help us unleash the full potential of B cells in immunotherapy.

19.
Vaccines (Basel) ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560537

RESUMO

Metabolomics is emerging as a promising tool to understand the effect of immunometabolism for the development of novel host-directed alternative therapies. Immunometabolism can modulate both innate and adaptive immunity in response to pathogens and vaccinations. For instance, infections can affect lipid and amino acid metabolism while vaccines can trigger bile acid and carbohydrate pathways. Metabolomics as a vaccinomics tool, can provide a broader picture of vaccine-induced biochemical changes and pave a path to potentiate the vaccine efficacy. Its integration with other systems biology tools or treatment modes can enhance the cure, response rate, and control over the emergence of drug-resistant strains. Mycobacterium tuberculosis (Mtb) infection can remodel the host metabolism for its survival, while there are many biochemical pathways that the host adjusts to combat the infection. Similarly, the anti-TB vaccine, Bacillus Calmette-Guerin (BCG), was also found to affect the host metabolic pathways thus modulating immune responses. In this review, we highlight the metabolomic schema of the anti-TB vaccine and its therapeutic applications. Rewiring of immune metabolism upon BCG vaccination induces different signaling pathways which lead to epigenetic modifications underlying trained immunity. Metabolic pathways such as glycolysis, central carbon metabolism, and cholesterol synthesis play an important role in these aspects of immunity. Trained immunity and its applications are increasing day by day and it can be used to develop the next generation of vaccines to treat various other infections and orphan diseases. Our goal is to provide fresh insight into this direction and connect various dots to develop a conceptual framework.

20.
J Phys Condens Matter ; 33(31)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34132205

RESUMO

GaxZn1-xO thin films with varying Ga fraction within the solubility limit were irradiated with high-energy heavy ions to induce electronic excitations. The films show good transmittance in the visible region and a reduction of about 20% in transmittance was observed for irradiated films at higher ion fluences. The Urbach energy was estimated and showed an augmenting response upon increase in doping fraction and ion irradiation, this divulges an enhancement of localized states in the bandgap or disorder in the films. The evolution of such localized states plays a vital role in charge transport and thus the temperature dependent electrical conductivity of irradiated thin films was studied to elucidate the dominant conduction mechanisms. The detailed analysis unfolds that in the high-temperature regime (180 K

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA