Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638549

RESUMO

Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Antifúngicos/farmacologia , Cicloeximida/farmacologia , Endocitose/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Transporte Proteico/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação/efeitos dos fármacos
2.
Int J Mol Sci ; 19(5)2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738448

RESUMO

In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT) family. These consist of (a) residues conserved across YATs that interact with the invariable part of amino acid substrates and (b) variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Evolução Molecular , Redes e Vias Metabólicas/genética , Filogenia , Sequência de Aminoácidos/genética , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Transporte Biológico/genética , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
3.
J Biol Chem ; 290(10): 6141-55, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25572393

RESUMO

Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly(56), Thr(57)), TMS3 (Glu(138)), and TMS6 (Phe(248)), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos/química , Aspergillus nidulans/enzimologia , Proteínas Fúngicas/química , Conformação Proteica , Substituição de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cristalografia por Raios X , Prolina/química , Prolina/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Mol Microbiol ; 84(3): 530-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22489878

RESUMO

Type I casein kinases are highly conserved among Eukaryotes. Of the two Aspergillus nidulans casein kinases I, CkiA is related to the δ/ε mammalian kinases and to Saccharomyces cerevisiae Hrr25p. CkiA is essential. Three recessive ckiA mutations leading to single residue substitutions, and downregulation using a repressible promoter, result in partial loss-of-function, which leads to a pleiotropic defect in amino acid utilization and resistance to toxic amino acid analogues. These phenotypes correlate with miss-routing of the YAT plasma membrane transporters AgtA (glutamate) and PrnB (proline) to the vacuole under conditions that, in the wild type, result in their delivery to the plasma membrane. Miss-routing to the vacuole and subsequent transporter degradation results in a major deficiency in the uptake of the corresponding amino acids that underlies the inability of the mutant strains to catabolize them. Our findings may have important implications for understanding how CkiA, Hrr25p and other fungal orthologues regulate the directionality of transport at the ER-Golgi interface.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aspergillus nidulans/enzimologia , Caseína Quinase I/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Aspergillus nidulans/química , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Transporte Biológico , Caseína Quinase I/química , Caseína Quinase I/genética , Membrana Celular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Ácido Glutâmico/metabolismo , Dados de Sequência Molecular , Prolina/metabolismo , Transporte Proteico , Homologia de Sequência de Aminoácidos
5.
Fungal Genet Biol ; 53: 84-96, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23395641

RESUMO

In the model filamentous fungus Aspergillus nidulans, PilA and PilB, two homologues of the Saccharomyces cerevisiae eisosome proteins Pil1/Lsp1, and SurG, a strict orthologue of Sur7, are assembled and form tightly packed structures in conidiospores. As A. nidulans differs in its reproduction pattern from the Saccharomycotina in that it has the ability to reproduce through two different types of spores, conidiospores and ascospores, the products of the asexual and the sexual cycle respectively, we investigated the eisosome distribution and localization during the sexual cycle. Our results show that core eisosome proteins PilA, PilB and SurG are not expressed in hülle cells or early ascospores, but are expressed in mature ascospores. All eisosomal proteins form punctate structures at the membrane of late ascospores. In mature but quiescent ascospores, PilA forms static punctate structures at the plasma membrane. PilB also was observed at the ascospore membrane as well, with higher concentration at the areas where the two halves of ascospores are joined together. Finally, SurG was localized both at the membrane of ascospores and perinuclearly. In germlings originating from ascospores the punctate structures were shown to be composed only of PilA. PilB is diffused in the cytoplasm and SurG was located in vacuoles and endosomes. This altered localization is identical to that found in germlings originated from conidiospores. In germinated ascospores PilA foci did not colocalise with the highly mobile and transient peripheral punctate structures of AbpA, a marker for sites of clathrin-mediated endocytosis. Deletions of each one or all the three core eisosomal genes do not affect viability or germination of ascospores. In the presence of myriocin - a specific inhibitor of sphingolipid biosynthesis - PilA-GFP foci of ascospore germlings were less numerous and their distribution was significantly altered, suggesting a correlation between PilA foci and sphingolipid biosynthesis.


Assuntos
Aspergillus nidulans/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Deleção de Genes , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Espaço Intracelular/metabolismo , Fenótipo , Ligação Proteica , Transporte Proteico , Esfingolipídeos/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
6.
Cell Rep ; 42(12): 113561, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38096056

RESUMO

Quiescence is a common cellular state, required for stem cell maintenance and microorganismal survival under stress conditions or starvation. However, the mechanisms promoting quiescence maintenance remain poorly known. Plasma membrane components segregate into distinct microdomains, yet the role of this compartmentalization in quiescence remains unexplored. Here, we show that flavodoxin-like proteins (FLPs), ubiquinone reductases of the yeast eisosome membrane compartment, protect quiescent cells from lipid peroxidation and ferroptosis. Eisosomes and FLPs expand specifically in respiratory-active quiescent cells, and mutants lacking either show accelerated aging and defective quiescence maintenance and accumulate peroxidized phospholipids with monounsaturated or polyunsaturated fatty acids (PUFAs). FLPs are essential for the extramitochondrial regeneration of the lipophilic antioxidant ubiquinol. FLPs, alongside the Gpx1/2/3 glutathione peroxidases, prevent iron-driven, PUFA-dependent ferroptotic cell death. Our work describes ferroptosis-protective mechanisms in yeast and introduces plasma membrane compartmentalization as an important factor in the long-term survival of quiescent cells.


Assuntos
Ferroptose , Saccharomyces cerevisiae , Peroxidação de Lipídeos , Antioxidantes , Ácidos Graxos Insaturados
7.
Eukaryot Cell ; 9(10): 1441-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20693301

RESUMO

Eisosomes are subcortical organelles implicated in endocytosis and have hitherto been described only in Saccharomyces cerevisiae. They comprise two homologue proteins, Pil1 and Lsp1, which colocalize with the transmembrane protein Sur7. These proteins are universally conserved in the ascomycetes. We identify in Aspergillus nidulans (and in all members of the subphylum Pezizomycotina) two homologues of Pil1/Lsp1, PilA and PilB, originating from a duplication independent from that extant in the subphylum Saccharomycotina. In the aspergilli there are several Sur7-like proteins in each species, including one strict Sur7 orthologue (SurG in A. nidulans). In A. nidulans conidiospores, but not in hyphae, the three proteins colocalize at the cell cortex and form tightly packed punctate structures that appear different from the clearly distinct eisosome patches observed in S. cerevisiae. These structures are assembled late during the maturation of conidia. In mycelia, punctate structures are present, but they are composed only of PilA, while PilB is diffused in the cytoplasm and SurG is located in vacuoles and endosomes. Deletion of each of the genes does not lead to any obvious growth phenotype, except for moderate resistance to itraconazole. We could not find any obvious association between mycelial (PilA) eisosome-like structures and endocytosis. PilA and SurG are necessary for conidial eisosome organization in ways that differ from those for their S. cerevisiae homologues. These data illustrate that conservation of eisosomal proteins within the ascomycetes is accompanied by a striking functional divergence.


Assuntos
Aspergillus nidulans/fisiologia , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Organelas/metabolismo , Esporos Fúngicos/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Aspergillus nidulans/ultraestrutura , Endocitose , Proteínas Fúngicas/genética , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Fosfoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
8.
J Vis Exp ; (173)2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369938

RESUMO

It is well established that colony growth of filamentous fungi, mostly dependent on changes in hyphae/mycelia apical growth rate, is macroscopically estimated on solidified media by comparing colony size. However, to quantitatively measure the growth rate of genetically different fungal strains or strains under different environmental/growth conditions (pH, temperature, carbon and nitrogen sources, antibiotics, etc.) is challenging. Thus, the pursuit of complementary approaches to quantify growth kinetics becomes mandatory in order to better understand fungal cell growth. Furthermore, it is well-known that filamentous fungi, including Aspergillus spp., have distinct modes of growth and differentiation under sub-aerial conditions on solid media or submerged cultures. Here, we detail a quantitative microscopic method for analyzing growth kinetics of the model fungus Aspergillus nidulans, using live imaging in both submerged cultures and solid media. We capture images, analyze, and quantify growth rates of different fungal strains in a reproducible and reliable manner using an open source, free software for bio-images (e.g., Fiji), in a way that does not require any prior image analysis expertise from the user.


Assuntos
Aspergillus nidulans , Proteínas Fúngicas , Hifas , Microscopia , Software
9.
Sci Rep ; 11(1): 7391, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795709

RESUMO

Plants produce toxic secondary metabolites as defense mechanisms against phytopathogenic microorganisms and predators. L-azetidine-2-carboxylic acid (AZC), a toxic proline analogue produced by members of the Liliaceae and Agavaciae families, is part of such a mechanism. AZC causes a broad range of toxic, inflammatory and degenerative abnormalities in human and animal cells, while it is known that some microorganisms have evolved specialized strategies for AZC resistance. However, the mechanisms underlying these processes are poorly understood. Here, we identify a widespread mechanism for AZC resistance in fungi. We show that the filamentous ascomycete Aspergillus nidulans is able to not only resist AZC toxicity but also utilize it as a nitrogen source via GABA catabolism and the action of the AzhA hydrolase, a member of a large superfamily of detoxifying enzymes, the haloacid dehalogenase-like hydrolase (HAD) superfamily. This detoxification process is further assisted by the NgnA acetyltransferase, orthologue of Mpr1 of Saccharomyces cerevisiae. We additionally show that heterologous expression of AzhA protein can complement the AZC sensitivity of S. cerevisiae. Furthermore, a detailed phylogenetic analysis of AzhA homologues in Fungi, Archaea and Bacteria is provided. Overall, our results unravel a widespread mechanism for AZC resistance among microorganisms, including important human and plant pathogens.


Assuntos
Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/metabolismo , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo , Biodegradação Ambiental , Biologia Computacional , Simulação por Computador , Farmacorresistência Fúngica , Regulação da Expressão Gênica , Genótipo , Inflamação , Microscopia Confocal , Filogenia , Compostos Fitoquímicos , Plasmídeos/metabolismo , Prolina/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Fungal Genet Biol ; 47(3): 254-67, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20026236

RESUMO

In Aspergillus nidulans the fbaA1013 mutation results in reduced or total loss of growth on glycolytic and gluconeogenic carbon sources, respectively. It also negatively affects growth on several amino acids (including L-proline, L-glutamate or L-aspartate) that the fungus can use as nitrogen source on glycolytic carbon sources. Complementation of the fbaA1013 mutation using an A. nidulans genomic library resulted in cloning of the fbaA gene, which encodes a putative fructose 1,6-biphosphate aldolase (FBA), an enzyme involved in both glycolysis and gluconeogenesis. The fbaA1013 mutation is a chromosome rearrangement in the 5' regulatory region of the fbaA gene resulting in reduced or total loss of transcription in response to glycolytic and gluconeogenic carbon sources respectively. The fbaA gene is essential for growth. A functional FbaA protein is necessary for plasma membrane localization of the AgtA acidic amino acid (L-glutamate/L-aspartate) transporter, as the fbaA1013 mutation results in targeting to and presumably subsequent degradation of AgtA in the vacuole. Our results support a novel role of the FbaA protein that is, involvement in the regulation of amino acids transporters.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aspergillus nidulans/enzimologia , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Carbono/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Genoma Fúngico , Gluconeogênese/genética , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Glicólise/genética , Dados de Sequência Molecular , Mutação , Nitrogênio/metabolismo , Prolina/genética , Prolina/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
11.
Eukaryot Cell ; 8(3): 339-52, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19168757

RESUMO

We identified agtA, a gene that encodes the specific dicarboxylic amino acid transporter of Aspergillus nidulans. The deletion of the gene resulted in loss of utilization of aspartate as a nitrogen source and of aspartate uptake, while not completely abolishing glutamate utilization. Kinetic constants showed that AgtA is a high-affinity dicarboxylic amino acid transporter and are in agreement with those determined for a cognate transporter activity identified previously. The gene is extremely sensitive to nitrogen metabolite repression, depends on AreA for its expression, and is seemingly independent from specific induction. We showed that the localization of AgtA in the plasma membrane necessitates the ShrA protein and that an active process elicited by ammonium results in internalization and targeting of AgtA to the vacuole, followed by degradation. Thus, nitrogen metabolite repression and ammonium-promoted vacuolar degradation act in concert to downregulate dicarboxylic amino acid transport activity.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aspergillus nidulans/metabolismo , Regulação para Baixo , Endocitose , Proteínas Fúngicas/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos Dicarboxílicos/metabolismo , Aspergillus nidulans/química , Aspergillus nidulans/genética , Transporte Biológico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
12.
Mol Membr Biol ; 26(5): 356-70, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19670073

RESUMO

The Amino acid-Polyamine-Organocation (APC) superfamily is the main family of amino acid transporters found in all domains of life and one of the largest families of secondary transporters. Here, using a sensitive homology threading approach and modelling we show that the predicted structure of APC members is extremely similar to the crystal structures of several prokaryotic transporters belonging to evolutionary distinct protein families with different substrate specificities. All of these proteins, despite having no primary amino acid sequence similarity, share a similar structural core, consisting of two V-shaped domains of five transmembrane domains each, intertwined in an antiparallel topology. Based on this model, we reviewed available data on functional mutations in bacterial, fungal and mammalian APCs and obtained novel mutational data, which provide compelling evidence that the amino acid binding pocket is located in the vicinity of the unwound part of two broken helices, in a nearly identical position to the structures of similar transporters. Our analysis is fully supported by the evolutionary conservation and specific amino acid substitutions in the proposed substrate binding domains. Furthermore, it allows predictions concerning residues that might be crucial in determining the specificity profile of APC members. Finally, we show that two cytoplasmic loops constitute important functional elements in APCs. Our work along with different kinetic and specificity profiles of APC members in easily manipulated bacterial and fungal model systems could form a unique framework for combining genetic, in-silico and structural studies, for understanding the function of one of the most important transporter families.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sequência de Aminoácidos , Sistemas de Transporte de Aminoácidos/química , Aminoácidos/química , Aminoácidos/metabolismo , Aspergillus nidulans/genética , Sítios de Ligação , Simulação por Computador , Análise Mutacional de DNA , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
13.
FEMS Microbiol Rev ; 43(6): 642-673, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504467

RESUMO

The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.


Assuntos
Compartimento Celular , Membrana Celular/química , Proteínas Fúngicas/química , Fungos/citologia , Proteínas de Membrana/química , Transporte Biológico , Parede Celular/química , Fungos/química , Homeostase , Saccharomyces cerevisiae
14.
J Bacteriol ; 190(19): 6318-29, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18641132

RESUMO

Synechococcus elongatus strain PCC 7942 is an alkaliphilic cyanobacterium that tolerates a relatively high salt concentration as a freshwater microorganism. Its genome sequence revealed seven genes, nha1 to nha7 (syn_pcc79420811, syn_pcc79421264, syn_pcc7942359, syn_pcc79420546, syn_pcc79420307, syn_pcc79422394, and syn_pcc79422186), and the deduced amino acid sequences encoded by these genes are similar to those of Na(+)/H(+) antiporters. The present work focused on molecular and functional characterization of these nha genes encoding Na(+)/H(+) antiporters. Our results show that of the nha genes expressed in Escherichia coli, only nha3 complemented the deficient Na(+)/H(+) antiporter activity of the Na(+)-sensitive TO114 recipient strain. Moreover, two of the cyanobacterial strains with separate disruptions in the nha genes (Deltanha1, Deltanha2, Deltanha3, Deltanha4, Deltanha5, and Deltanha7) had a phenotype different from that of the wild type. In particular, DeltanhA3 cells showed a high-salt- and alkaline-pH-sensitive phenotype, while Deltanha2 cells showed low salt and alkaline pH sensitivity. Finally, the transcriptional profile of the nha1 to nha7 genes, monitored using the real-time PCR technique, revealed that the nha6 gene is upregulated and the nha1 gene is downregulated under certain environmental conditions.


Assuntos
Proteínas de Bactérias/fisiologia , Água Doce/microbiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Synechococcus/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Western Blotting , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/classificação , Trocadores de Sódio-Hidrogênio/genética , Synechococcus/efeitos dos fármacos , Synechococcus/genética , Transcrição Gênica
15.
Fungal Genet Biol ; 45(6): 839-50, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18406638

RESUMO

Although the process of conidial germination in filamentous fungi has been extensively studied, many aspects remain to be elucidated since the asexual spore or conidium is vital in their life cycle. Breakage and reformation of cell wall polymer bonds along with the maintenance of cell wall plasticity during conidia germination depend upon a range of hydrolytic enzymes whose activity is analogous to that of expansins, a highly conserved group of plant cell wall proteins with characteristic wall loosening activity. In the current study, we identified and characterized the eglD gene in Aspergillus nidulans, an expansin-like gene the product of which shows strong similarities with bacterial and fungal endo-beta1,4-glucanases. However, we failed to show such activity in vitro. The eglD gene is constitutively expressed in all developmental stages and compartments of A. nidulans asexual life cycle. However, the EglD protein is exclusively present in conidial cell walls. The role of the EglD protein in morphogenesis, growth and germination rate of conidia was investigated. Our results show that EglD is a conidial cell wall localized expansin-like protein, which could be involved in cell wall remodeling during germination.


Assuntos
Aspergillus nidulans/enzimologia , Parede Celular/enzimologia , Celulase/química , Esporos Fúngicos/enzimologia , Sequência de Aminoácidos , Aspergillus nidulans/citologia , Aspergillus nidulans/crescimento & desenvolvimento , Aspergillus nidulans/fisiologia , Ciclo Celular , Celulase/genética , Celulase/metabolismo , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Esporos Fúngicos/crescimento & desenvolvimento
16.
Sci Rep ; 5: 15200, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468899

RESUMO

The plasma membrane is implicated in a variety of functions, whose coordination necessitates highly dynamic organization of its constituents into domains of distinct protein and lipid composition. Eisosomes, at least partially, mediate this lateral plasma membrane compartmentalization. In this work, we show that the Nce102 homologue of Aspergillus nidulans colocalizes with eisosomes and plays a crucial role in density/number of PilA/SurG foci in the head of germlings. In addition we demonstrate that AnNce102 and PilA negatively regulate sphingolipid biosynthesis, since their deletions partially suppress the thermosensitivity of basA mutant encoding sphingolipid C4-hydroxylase and the growth defects observed upon treatment with inhibitors of sphingolipid biosynthesis, myriocin and Aureobasidin A. Moreover, we show that YpkA repression mimics genetic or pharmacological depletion of sphingolipids, conditions that induce the production of Reactive Oxygen Species (ROS), and can be partially overcome by deletion of pilA and/or annce102 at high temperatures. Consistent with these findings, pilAΔ and annce102Δ also show differential sensitivity to various oxidative agents, while AnNce102 overexpression can bypass sphingolipid depletion regarding the PilA/SurG foci number and organization, also leading to the mislocalization of PilA to septa.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Esfingolipídeos/biossíntese , Membrana Celular/química , Membrana Celular/metabolismo , Endocitose , Ácidos Graxos Monoinsaturados/metabolismo , Proteínas de Fímbrias/genética , Proteínas Fúngicas/genética , Microscopia Confocal , Mutagênese , Fases de Leitura Aberta/genética , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Imagem com Lapso de Tempo
17.
Commun Integr Biol ; 4(1): 64-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21509182

RESUMO

Eisosomes are punctate structures located in the cytoplasmic side of the cell membrane of ascomycetes. In Saccharomyces cerevisiae they coincide topologically with and are necessary for the organisation of specific membrane domains. The eisosomal proteins are universally and quite strictly conserved in the sub-phylum, however this evolutionary conservation is in apparent contradiction with an elusive functional significance. The comparative analysis of the eisosomes of S. cerevisiae and Aspergillus nidulans reveal striking differences in the assembly and developmental fate of these structures between these two model organisms.

18.
Fungal Genet Biol ; 44(7): 615-26, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17350864

RESUMO

The major proline transporter (PrnB) of Aspergillus nidulans belongs to the Amino acid Polyamine Organocation (APC) transporter superfamily. Members of this family have not been subjected to systematic structure-function relationship studies. In this report, we examine the functional replacement of the three native Cys residues (Cys54, Cys352 and Cys530) of PrnB and the properties of an engineered Cys-less PrnB protein, as background for employing a Cys-scanning mutagenesis approach. We show that simultaneous replacement of Cys54 with Ala, Cys352 with Ala and Cys530 with Ser results in a functional Cys-less PrnB transporter. We also introduce the use of a biotin-acceptor domain tag to quantitate protein levels of the engineered PrnB mutants by Western blot analysis. Finally, by using the background of the Cys-less PrnB transporter, we evaluate the functional importance of amino acids Q219, K245 and F248 of PrnB, which our previous data had suggested to be involved in the mechanism of PrnB-mediated proline uptake. In the current study, we show that K245 and F248 but not Q219 are critical for PrnB-mediated proline uptake.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/fisiologia , Aspergillus nidulans/enzimologia , Proteínas Fúngicas/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/química , Aminoácidos/fisiologia , Transporte Biológico , Cisteína/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Mutação Puntual , Prolina/metabolismo , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
19.
Mol Microbiol ; 52(1): 205-16, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15049821

RESUMO

Aspergillus nidulans possesses three well-characterized purine transporters encoded by the genes uapA, uapC and azgA. Expression of these genes in mycelium is induced by purines and repressed by ammonium or glutamine through the action of the pathway-specific UaY regulator and the general GATA factor AreA respectively. Here, we describe the regulation of expression of purine transporters during conidiospore germination and the onset of mycelium development. In resting conidiospores, mRNA steady-state levels of purine transporter genes and purine uptake activities are undetectable or very low. Both mRNA steady-state levels and purine transport activities increase substantially during the isotropic growth phase of conidial germination. Both processes occur in the absence of purine induction and independently of the nitrogen source present in the medium. The transcriptional activator UaY is dispensable for the germination-induced expression of the three transporter genes. AreA, on the other hand, is essential for the expression of uapA, but not for that of azgA or uapC, during germination. Transcriptional activation of uapA, uapC and azgA during germination is also independent of the presence of a carbon source in the medium. This work establishes the presence of a novel system triggering purine transporter transcription during germination. Similar results have been found in studies on the expression of other transporters in A. nidulans, suggesting that global expression of transporters might operate as a general system for sensing solute availability.


Assuntos
Aspergillus nidulans/genética , Aspergillus nidulans/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Transporte de Nucleobases/genética , Purinas/metabolismo , Ativação Transcricional , Aspergillus nidulans/crescimento & desenvolvimento , Northern Blotting , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Hipoxantina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Micélio/crescimento & desenvolvimento , Proteínas de Transporte de Nucleobases/metabolismo , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Xantina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA