Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000272

RESUMO

In recent years, interest in very small proteins (µ-proteins) has increased significantly, and they were found to fulfill important functions in all prokaryotic and eukaryotic species. The halophilic archaeon Haloferax volcanii encodes about 400 µ-proteins of less than 70 amino acids, 49 of which contain at least two C(P)XCG motifs and are, thus, predicted zinc finger proteins. The determination of the NMR solution structure of HVO_2753 revealed that only one of two predicted zinc fingers actually bound zinc, while a second one was metal-free. Therefore, the aim of the current study was the homologous production of additional C(P)XCG proteins and the quantification of their zinc content. Attempts to produce 31 proteins failed, underscoring the particular difficulties of working with µ-proteins. In total, 14 proteins could be produced and purified, and the zinc content was determined. Only nine proteins complexed zinc, while five proteins were zinc-free. Three of the latter could be analyzed using ESI-MS and were found to contain another metal, most likely cobalt or nickel. Therefore, at least in haloarchaea, the variability of predicted C(P)XCG zinc finger motifs is higher than anticipated, and they can be metal-free, bind zinc, or bind another metal. Notably, AlphaFold2 cannot correctly predict whether or not the four cysteines have the tetrahedral configuration that is a prerequisite for metal binding.


Assuntos
Proteínas Arqueais , Haloferax volcanii , Dedos de Zinco , Zinco , Haloferax volcanii/metabolismo , Haloferax volcanii/química , Zinco/metabolismo , Zinco/química , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ligação Proteica , Sequência de Aminoácidos
2.
Chembiochem ; 21(8): 1178-1187, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31705614

RESUMO

Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins have been overlooked for a long time and were only recently rediscovered. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure-function relationship. Herein, a method is presented for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded, and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), 27 small proteins from 9 different bacterial and archaeal organisms have been investigated. It is found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. A protocol for fast NMR spectroscopy structure elucidation is described for the small proteins that adopt a persistently folded structure by implementation of new NMR technologies, including automated resonance assignment and nonuniform sampling in combination with targeted acquisition.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Biologia Computacional/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Dobramento de Proteína , Fases de Leitura Aberta , Conformação Proteica
3.
Biochem Soc Trans ; 47(3): 933-944, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31189733

RESUMO

All analyzed haloarachea are polyploid. In addition, haloarchaea contain more than one type of chromosome, and thus the gene dosage can be regulated independently on different replicons. Haloarchaea and several additional archaea have more than one replication origin on their major chromosome, in stark contrast with bacteria, which have a single replication origin. Two of these replication origins of Haloferax volcanii have been studied in detail and turned out to have very different properties. The chromosome copy number appears to be regulated in response to growth phases and environmental factors. Archaea typically contain about two Origin Recognition Complex (ORC) proteins, which are homologous to eukaryotic ORC proteins. However, haloarchaea are the only archaeal group that contains a multitude of ORC proteins. All 16 ORC protein paralogs from H. volcanii are involved in chromosome copy number regulation. Polyploidy has many evolutionary advantages for haloarchaea, e.g. a high resistance to desiccation, survival over geological times, and the relaxation of cell cycle-specific replication control. A further advantage is the ability to grow in the absence of external phosphate while using the many genome copies as internal phosphate storage polymers. Very efficient gene conversion operates in haloarchaea and results in the unification of genome copies. Taken together, haloarchaea are excellent models to study many aspects of genome biology in prokaryotes, exhibiting properties that have not been found in bacteria.


Assuntos
Archaea/genética , Evolução Molecular , Conversão Gênica , Genes Arqueais , Poliploidia , Cromossomos de Archaea , Origem de Replicação
4.
J Bacteriol ; 200(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29941422

RESUMO

Replication initiation in archaea involves a protein named ORC, Cdc6, or ORC1/Cdc6, which is homologous to the eukaryotic origin recognition complex (ORC) proteins and to the eukaryotic Cdc6. Archaeal replication origins are comprised of origin repeat regions and adjacent orc genes. Some archaea contain a single replication origin and a single orc gene, while others have more than one of each. Haloferax volcanii is exceptional because it contains, in total, six replication origins on three chromosomes and 16 orc genes. Phylogenetic trees were constructed that showed that orc gene duplications occurred at very different times in evolution. To unravel the influence of the ORC proteins on chromosome copy number and cellular fitness, it was attempted to generate deletion mutants of all 16 genes. A total of 12 single-gene deletion mutants could be generated, and only three orc gene turned out to be essential. For one gene, the deletion analysis failed. Growth analyses revealed that no deletion mutant had a growth defect, but some had a slight growth advantage compared to the wild type. Quantification of the chromosome copy numbers in the deletion mutants showed that all 12 ORC proteins influenced the copy numbers of one, two, or all three chromosomes. The lack of an ORC led to an increase or decrease of chromosome copy number. Therefore, chromosome copy numbers in Hfxvolcanii are regulated by an intricate network of ORC proteins. This is in contrast to other archaea, in which ORC proteins typically bind specifically to the adjacent origin.IMPORTANCE The core origins of archaea are comprised of a repeat region and an adjacent gene for an origin recognition complex (ORC) protein, which is homologous to eukaryotic ORC proteins. Haloferax volcanii is exceptional because it contains six replication origins on three chromosomes and an additional 10 orc genes that are not adjacent to an origin. This unique ORC protein repertoire was used to unravel the importance of core origin orc genes and of origin-remote orc genes. Remarkably, all ORC proteins influenced the copy number of at least one chromosome. Some of them influenced those of all three chromosomes, showing that cross-regulation in trans exists in Hfx. volcanii Furthermore, the evolution of the archaeal ORC protein family was analyzed.


Assuntos
Cromossomos de Archaea/genética , Variações do Número de Cópias de DNA , Haloferax volcanii/genética , Complexo de Reconhecimento de Origem/genética , Replicação do DNA , Deleção de Genes , Regulação da Expressão Gênica em Archaea , Filogenia , Deleção de Sequência
5.
J Bacteriol ; 200(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038254

RESUMO

Haloferax volcanii is polyploid and contains about 20 genome copies under optimal conditions. However, the chromosome copy number is highly regulated and ranges from two during phosphate starvation to more than 40 under conditions of phosphate surplus. The aim of this study was the characterization of the influence of two replication origins on the genome copy number. The origin repeats and the genes encoding origin recognition complex (ORC) proteins were deleted. The core origin oriC1-orc1 (ori1) deletion mutant had a lower genome copy number and a higher level of fitness than the wild type, in stark contrast to the oriC2-orc5 (ori2) deletion mutant. The genes adjacent to ori1 could not be deleted, and thus, at least two of them are probably essential, while deletion of the genes adjacent to ori2 was possible. Various fragments of and around the origins were cloned into a suicide plasmid to generate haloarchaeal artificial chromosomes (HACs). The copy number of the oriC1-orc1 HAC was much higher than that of the oriC2-orc5 HAC. The addition of adjacent genes influenced both the HAC copy number and the chromosome copy number. The results indicate that the origins of H. volcanii are not independent but that the copy number is regulated via a network of genes around the origins.IMPORTANCE Several species of archaea have more than one origin of replication on their major chromosome and are thus the only known prokaryotic species that allow the analysis of the evolution of multiorigin replication. The widely studied Haloferax volcanii H26 strain has a major chromosome with four origins of replication. Two origins, ori1 and ori2, were chosen for an in-depth analysis using deletion mutants and haloarchaeal artificial chromosomes. The analysis was not restricted to the core origin regions; origin-adjacent genes were also included. Because H. volcanii is polyploid, the effects on the chromosome copy number were of specific importance. The results revealed extreme differences between the two origins.


Assuntos
Cromossomos Artificiais , Deleção de Genes , Dosagem de Genes , Haloferax volcanii/genética , Origem de Replicação , Replicação do DNA , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Mutação , Complexo de Reconhecimento de Origem/genética , Plasmídeos
6.
J Bacteriol ; 198(16): 2251-62, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27297879

RESUMO

UNLABELLED: The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii IMPORTANCE: The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea.


Assuntos
Aldeído Liases/metabolismo , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose 1-Desidrogenase/metabolismo , Haloferax volcanii/enzimologia , Hidroliases/metabolismo , Aldeído Liases/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Deleção de Genes , Glucose 1-Desidrogenase/genética , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Hidroliases/genética , Filogenia
7.
BMC Genomics ; 17(1): 629, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27519343

RESUMO

BACKGROUND: Differential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. Although the transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. Therefore, we used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii. RESULTS: Three independent cultures of Hfx. volcanii grown under optimal conditions to the mid-exponential growth phase were used to determine the primary transcriptome and map the 5'-ends of the transcripts. In total, 4749 potential TSSs were detected. A position weight matrix (PWM) was derived for the promoter predictions, and the results showed that 64 % of the TSSs were preceded by stringent or relaxed basal promoters. Of the identified TSSs, 1851 belonged to protein-coding genes. Thus, fewer than half (46 %) of the 4040 protein-coding genes were expressed under optimal growth conditions. Seventy-two percent of all protein-coding transcripts were leaderless, which emphasized that this pathway is the major pathway for translation initiation in haloarchaea. A total of 2898 of the TSSs belonged to potential non-coding RNAs, which accounted for an unexpectedly high fraction (61 %) of all transcripts. Most of the non-coding TSSs had not been previously described (2792) and represented novel sequences (59 % of all TSSs). A large fraction of the potential novel non-coding transcripts were cis-antisense RNAs (1244 aTSSs). A strong negative correlation between the levels of antisense transcripts and cognate sense mRNAs was found, which suggested that the negative regulation of gene expression via antisense RNAs may play an important role in haloarchaea. The other types of novel non-coding transcripts corresponded to internal transcripts overlapping with mRNAs (1153 iTSSs) and intergenic small RNA (sRNA) candidates (395 TSSs). CONCLUSION: This study provides a comprehensive map of the primary transcriptome of Hfx. volcanii grown under optimal conditions. Fewer than half of all protein-coding genes have been transcribed under these conditions. Unexpectedly, more than half of the detected TSSs belonged to several classes of non-coding RNAs. Thus, RNA-based regulation appears to play a more important role in haloarchaea than previously anticipated.


Assuntos
Genoma Arqueal , Haloferax volcanii/genética , RNA Arqueal/metabolismo , Regiões 5' não Traduzidas , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas , RNA Antissenso/metabolismo , RNA Arqueal/química , RNA Arqueal/isolamento & purificação , RNA não Traduzido/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição , Transcriptoma
8.
Microbiology (Reading) ; 162(5): 730-739, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26919857

RESUMO

Synechocystis sp. PCC 6803 is a cyanobacterial model strain widely used to study many biological processes and is also applied for the production of biopolymers. Recently, it was reported that two of its substrains are highly polyploid. To test whether this can be generalized to the whole strain, six substrains were selected and their ploidy levels quantified. The ploidy levels of all substrains were highly growth phase regulated and the copy number was on average about 20 at an OD750 of 0.1 and about 4 at an OD750 of 2.5. In addition to growth phase, external conditions were found to influence the ploidy level, i.e. the copy number was elevated at lower light intensity and at higher phosphate concentrations (53 and 35 copies, respectively). In the absence of external phosphate, considerable growth was observed, although growth rate and growth yield were much lower than in the presence of either orthophosphate or genomic DNA as external source of phosphate. A rapid reduction in genome copy number was observed during growth in the absence of phosphate, indicating that replication ceased and genomes were distributed to the daughter cells. During prolonged incubation of stationary-phase cultures in the absence of phosphate, the cells eventually became monoploid. Taking the data together, the ploidy level of Synechocystis sp. PCC 6803 is extremely variable and is influenced by both growth phase and physical and chemical environmental parameters.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Bacteriano/genética , Fosfatos/metabolismo , Poliploidia , Synechocystis/genética , Synechocystis/classificação , Synechocystis/crescimento & desenvolvimento
9.
RNA ; 18(3): 412-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22274954

RESUMO

tRNAs from all three kingdoms of life contain a variety of modified nucleotides required for their stability, proper folding, and accurate decoding. One prominent example is the eponymous ribothymidine (rT) modification at position 54 in the T-arm of eukaryotic and bacterial tRNAs. In contrast, in most archaea this position is occupied by another hypermodified nucleotide: the isosteric N1-methylated pseudouridine. While the enzyme catalyzing pseudouridine formation at this position is known, the pseudouridine N1-specific methyltransferase responsible for this modification has not yet been experimentally identified. Here, we present biochemical and genetic evidence that the two homologous proteins, Mja_1640 (COG 1901, Pfam DUF358) and Hvo_1989 (Pfam DUF358) from Methanocaldococcus jannaschii and Haloferax volcanii, respectively, are representatives of the methyltransferase responsible for this modification. However, the in-frame deletion of the pseudouridine N1-methyltransferase gene in H. volcanii did not result in a discernable phenotype in line with similar observations for knockouts of other T-arm methylating enzymes.


Assuntos
Archaea/enzimologia , Archaea/genética , Pseudouridina/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Técnicas de Inativação de Genes , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Methanococcales/genética , Methanococcales/metabolismo , Metilação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Conformação Proteica , RNA de Transferência/química , Alinhamento de Sequência , tRNA Metiltransferases/genética
10.
RNA Biol ; 11(5): 484-93, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24755959

RESUMO

Small regulatory RNAs (sRNAs) are universally distributed in all three domains of life, Archaea, Bacteria, and Eukaryotes. In bacteria, sRNAs typically function by binding near the translation start site of their target mRNAs and thereby inhibit or activate translation. In eukaryotes, miRNAs and siRNAs typically bind to the 3'-untranslated region (3'-UTR) of their target mRNAs and influence translation efficiency and/or mRNA stability. In archaea, sRNAs have been identified in all species investigated using bioinformatic approaches, RNomics, and RNA-Seq. Their size can vary significantly between less than 50 to more than 500 nucleotides. Differential expression of sRNA genes has been studied using northern blot analysis, microarrays, and RNA-Seq. In addition, biological functions have been unraveled by genetic approaches, i.e., by characterization of designed mutants. As in bacteria, it was revealed that archaeal sRNAs are involved in many biological processes, including metabolic regulation, adaptation to extreme conditions, stress responses, and even in regulation of morphology and cellular behavior. Recently, the first target mRNAs were identified in archaea, including one sRNA that binds to the 5'-region of two mRNAs in Methanosarcina mazei Gö1 and a few sRNAs that bind to 3'-UTRs in Sulfolobus solfataricus, three Pyrobaculum species, and Haloferax volcanii, indicating that archaeal sRNAs appear to be able to target both the 5'-UTR or the 3'-UTRs of their respective target mRNAs. In addition, archaea contain tRNA-derived fragments (tRFs), and one tRF has been identified as a major ribosome-binding sRNA in H. volcanii, which downregulates translation in response to stress. Besides regulatory sRNAs, archaea contain further classes of sRNAs, e.g., CRISPR RNAs (crRNAs) and snoRNAs.


Assuntos
Archaea/genética , RNA Antissenso/genética , RNA Arqueal/genética , Pequeno RNA não Traduzido/genética , Archaea/metabolismo , Pareamento de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica em Archaea , Genômica , RNA Antissenso/metabolismo , RNA Arqueal/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/química , RNA de Transferência/genética
11.
Biochem Soc Trans ; 41(1): 339-43, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23356308

RESUMO

Several species of haloarchaea have been shown to be polyploid and thus this trait might be typical for and widespread in haloarchaea. In the present paper, nine different possible evolutionary advantages of polyploidy for haloarchaea are discussed, including low mutation rate, radiation/desiccation resistance, gene redundancy and survival over geological times and at extraterrestrial sites. Experimental indications exist for all but one of these evolutionary advantages. Several of the advantages require gene conversion, which has been shown to be present and active in haloarchaea.


Assuntos
Archaea/genética , Evolução Molecular , Poliploidia , Archaea/efeitos da radiação , Conversão Gênica , Dosagem de Genes , Genes Arqueais
12.
Genes (Basel) ; 14(7)2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37510340

RESUMO

Vibrio natriegens is the fastest-growing bacterium, with a doubling time of approximately 12-14 min. It has a high potential for basic research and biotechnological applications, e.g., it can be used for the cell-free production of (labeled) heterologous proteins, for synthetic biological applications, and for the production of various compounds. However, the ploidy level in V. natriegens remains unknown. At nine time points throughout the growth curve, we analyzed the numbers of origins and termini of both chromosomes with qPCR and the relative abundances of all genomic sites with marker frequency analyses. During the lag phase until early exponential growth, the origin copy number and origin/terminus ratio of chromosome 1 increased severalfold, but the increase was lower for chromosome 2. This increase was paralleled by an increase in cell volume. During the exponential phase, the origin/terminus ratio and cell volume decreased again. This highly dynamic and fast regulation has not yet been described for any other species. In this study, the gene dosage increase in origin-adjacent genes during the lag phase is discussed together with the nonrandom distribution of genes on the chromosomes of V. natriegens. Taken together, the results of this study provide the first comprehensive overview of the chromosome dynamics in V. natriegens and will guide the optimization of molecular biological characterization and biotechnological applications.


Assuntos
Variações do Número de Cópias de DNA , Vibrio , Vibrio/genética , Cromossomos , Ploidias
13.
Microorganisms ; 11(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764113

RESUMO

Genomic DNA has high phosphate content; therefore, monoploid prokaryotes need an external phosphate source or an internal phosphate storage polymer for replication and cell division. For two polyploid prokaryotic species, the halophilic archaeon Haloferax volcanii and the cyanobacterium Synechocystis PCC 6803, it has been reported that they can grow in the absence of an external phosphate source by reducing the genome copy number per cell. To unravel whether this feature might be widespread in and typical for polyploid prokaryotes, three additional polyploid prokaryotic species were analyzed in the present study, i.e., the alphaproteobacterium Zymomonas mobilis, the gammaproteobacterium Azotobacter vinelandii, and the haloarchaeon Halobacterium salinarum. Polyploid cultures were incubated in the presence and in the absence of external phosphate, growth was recorded, and genome copy numbers per cell were quantified. Limited growth in the absence of phosphate was observed for all three species. Phosphate was added to phosphate-starved cultures to verify that the cells were still viable and growth-competent. Remarkably, stationary-phase cells grown in the absence or presence of phosphate did not become monoploid but stayed oligoploid with about five genome copies per cell. As a negative control, it was shown that monoploid Escherichia coli cultures did not exhibit any growth in the absence of phosphate. Taken together, all five polyploid prokaryotic species that have been characterized until now can grow in the absence of environmental phosphate by reducing their genome copy numbers, indicating that cell proliferation outperforms other evolutionary advantages of polyploidy.

14.
Front Microbiol ; 14: 1280972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094630

RESUMO

It is increasingly recognized that very small proteins (µ-proteins) are ubiquitously found in all species of the three domains of life, and that they fulfill important functions. The halophilic archaeon Haloferax volcanii contains 282 µ-proteins of less than 70 amino acids. Notably, 43 of these contain two C(P)XCG motifs, suggesting their potential to complex a zinc ion. To explore the significance of these proteins, 16 genes encoding C(P)XCG proteins had been deleted, and the majority of mutants exhibited phenotypic differences to the wild-type. One such protein, HVO_2753, was thoroughly characterized in a previous study. In the present study an in-depth analysis of a second protein, HVO_0758, was performed. To achieve this goal, the HVO_0758 protein was produced heterologously in Escherichia coli and homologously in H. volcanii. The purified protein was characterized using various biochemical approaches and NMR spectroscopy. The findings demonstrated that HVO_0758 is indeed a bona fide zinc finger protein, and that all four cysteine residues are essential for folding. The NMR solution structure was solved, revealing that HVO_0758 is comprised of an N-terminal alpha helix containing several positively charged residues and a globular core with the zinc finger domain. The transcriptomes of the HVO_0758 deletion mutant and, for comparison, the HVO_2753 deletion mutant were analyzed with RNA-Seq and compared against that of the wild-type. In both mutants many motility and chemotaxis genes were down-regulated, in agreement to the phenotype of the deletion mutants, which had a swarming deficit. The two H. volcanii zinc-finger µ-proteins HVO_0758 and HVO_2753 showed many differences. Taken together, two zinc finger µ-proteins of H. volcanii have been characterized intensively, which emerged as pivotal contributors to swarming behavior and biofilm formation.

15.
Front Microbiol ; 14: 1291523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029211

RESUMO

Genomes of bacteria and archaea contain a much larger fraction of unidirectional (serial) gene pairs than convergent or divergent gene pairs. Many of the unidirectional gene pairs have short overlaps of -4 nt and -1 nt. As shown previously, translation of the genes in overlapping unidirectional gene pairs is tightly coupled. Two alternative models for the fate of the post-termination ribosome predict either that overlaps or very short intergenic distances are essential for translational coupling or that the undissociated post-termination ribosome can scan through long intergenic regions, up to hundreds of nucleotides. We aimed to experimentally resolve the contradiction between the two models by analyzing three native gene pairs from the model archaeon Haloferax volcanii and three native pairs from Escherichia coli. A two reporter gene system was used to quantify the reinitiation frequency, and several stop codons in the upstream gene were introduced to increase the intergenic distances. For all six gene pairs from two species, an extremely strong dependence of the reinitiation efficiency on the intergenic distance was unequivocally demonstrated, such that even short intergenic distances of about 20 nt almost completely abolished translational coupling. Bioinformatic analysis of the intergenic distances in all unidirectional gene pairs in the genomes of H. volcanii and E. coli and in 1,695 prokaryotic species representative of 49 phyla showed that intergenic distances of -4 nt or -1 nt (= short gene overlaps of 4 nt or 1 nt) were by far most common in all these groups of archaea and bacteria. A small set of genes in E. coli, but not in H. volcanii, had intergenic distances of around +10 nt. Our experimental and bioinformatic analyses clearly show that translational coupling requires short gene overlaps, whereas scanning of intergenic regions by the post-termination ribosome occurs rarely, if at all. Short overlaps are enriched among genes that encode subunits of heteromeric complexes, and co-translational complex formation requiring precise subunit stoichiometry likely confers an evolutionary advantage that drove the formation and conservation of overlapping gene pairs during evolution.

16.
Nat Commun ; 14(1): 7597, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989750

RESUMO

NAD is a coenzyme central to metabolism that also serves as a 5'-terminal cap for bacterial and eukaryotic transcripts. Thermal degradation of NAD can generate nicotinamide and ADP-ribose (ADPR). Here, we use LC-MS/MS and NAD captureSeq to detect and identify NAD-RNAs in the thermophilic model archaeon Sulfolobus acidocaldarius and in the halophilic mesophile Haloferax volcanii. None of the four Nudix proteins of S. acidocaldarius catalyze NAD-RNA decapping in vitro, but one of the proteins (Saci_NudT5) promotes ADPR-RNA decapping. NAD-RNAs are converted into ADPR-RNAs, which we detect in S. acidocaldarius total RNA. Deletion of the gene encoding the 5'-3' exonuclease Saci-aCPSF2 leads to a 4.5-fold increase in NAD-RNA levels. We propose that the incorporation of NAD into RNA acts as a degradation marker for Saci-aCPSF2. In contrast, ADPR-RNA is processed by Saci_NudT5 into 5'-p-RNAs, providing another layer of regulation for RNA turnover in archaeal cells.


Assuntos
NAD , RNA , NAD/metabolismo , Adenosina Difosfato Ribose/metabolismo , Archaea/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem
17.
Mol Microbiol ; 80(3): 666-77, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21338422

RESUMO

Haloferax volcanii is highly polyploid and contains about 20 copies of the major chromosome. A heterozygous strain was constructed that contained two different types of genomes: the leuB locus contained either the wild-type leuB gene or a leuB:trpA gene introduced by gene replacement. As the trpA locus is devoid of the wild-type trpA gene, growth in the absence of both amino acids is only possible when both types of genomes are simultaneously present, exemplifying gene redundancy and the potential to form heterozygous cells as one possible evolutionary advantage of polyploidy. The heterozygous strain was grown (i) in the presence of tryptophan, selecting for the presence of leuB, (ii) in the presence of leucine selecting for leuB:trpA and (iii) in the absence of selection. Both types of genomes were quantified with real-time PCR. The first condition led to a complete loss of leuB:trpA-containing genomes, while under the second condition leuB-containing genomes were lost. Also in the absence of selection gene conversion led to a fast equalization of genomes and resulted in homozygous leuB-containing cells. Gene conversion leading to genome equalization can explain the escape from 'Muller's ratchet' as well as the ease of mutant construction using polyploid haloarchaea.


Assuntos
Conversão Gênica , Genoma Arqueal , Haloferax volcanii/genética , Poliploidia , Meios de Cultura/química , Técnicas de Inativação de Genes , Haloferax volcanii/crescimento & desenvolvimento , Leucina/genética , Leucina/metabolismo , Mutagênese , Seleção Genética , Triptofano/genética , Triptofano/metabolismo
18.
RNA Biol ; 9(7): 1011-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22767255

RESUMO

To define the complete sRNA population of the halophilic archaeon Haloferax volcanii, we employed high throughput sequencing. cDNAs were generated from RNA ranging in size from 17 to 500 nucleotides isolated from cells grown at three different conditions to exponential and stationary phase, respectively. Altogether, 145 intergenic and 45 antisense sRNAs were identified. Comparison of the expression profile showed different numbers of reads at the six different conditions for the majority of sRNAs. A striking difference in the number of sRNA reads was observed between cells grown under standard vs. low salt conditions. Furthermore, the six highest numbers of reads were found for low salt conditions. In contrast, only slight differences between sRNA reads at different growth temperatures were detected. Attempts to delete four sRNA genes revealed that one sRNA gene is essential. The three viable sRNA gene deletion mutants possessed distinct phenotypes. According to microarray analyses, the removal of the sRNA gene resulted in a profound change of the transcriptome when compared with the wild type. High throughput sequencing also showed the presence of high concentrations of tRNA derived fragments in H. volcanii. These tRF molecules were shown to have different amounts of reads at the six conditions analyzed. Northern analysis was used to confirm the presence of the tRNA-derived fragments.


Assuntos
Haloferax volcanii/genética , RNA Arqueal/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Mapeamento Cromossômico , Expressão Gênica , Regulação da Expressão Gênica em Archaea , Técnicas de Inativação de Genes , Genoma Arqueal , Haloferax volcanii/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , RNA Arqueal/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , Salinidade , Análise de Sequência de RNA , Transcriptoma
19.
J Bacteriol ; 193(3): 734-43, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21097629

RESUMO

Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera-Methanosarcina acetivorans and Methanococcus maripaludis-were investigated. M. acetivorans was found to be polyploid during fast growth (t(D) = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called "Muller's ratchet"). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection.


Assuntos
Conversão Gênica , Dosagem de Genes , Genoma Arqueal , Mathanococcus/genética , Methanosarcina/genética , Metano/metabolismo , Mathanococcus/crescimento & desenvolvimento , Mathanococcus/metabolismo , Methanosarcina/crescimento & desenvolvimento , Methanosarcina/metabolismo , Ploidias
20.
J Biol Chem ; 285(45): 34429-38, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20826804

RESUMO

Proteins of the Lsm family, including eukaryotic Sm proteins and bacterial Hfq, are key players in RNA metabolism. Little is known about the archaeal homologues of these proteins. Therefore, we characterized the Lsm protein from the haloarchaeon Haloferax volcanii using in vitro and in vivo approaches. H. volcanii encodes a single Lsm protein, which belongs to the Lsm1 subfamily. The lsm gene is co-transcribed and overlaps with the gene for the ribosomal protein L37e. Northern blot analysis shows that the lsm gene is differentially transcribed. The Lsm protein forms homoheptameric complexes and has a copy number of 4000 molecules/cell. In vitro analyses using electrophoretic mobility shift assays and ultrasoft mass spectrometry (laser-induced liquid bead ion desorption) showed a complex formation of the recombinant Lsm protein with oligo(U)-RNA, tRNAs, and an small RNA. Co-immunoprecipitation with a FLAG-tagged Lsm protein produced in vivo confirmed that the protein binds to small RNAs. Furthermore, the co-immunoprecipitation revealed several protein interaction partners, suggesting its involvement in different cellular pathways. The deletion of the lsm gene is viable, resulting in a pleiotropic phenotype, indicating that the haloarchaeal Lsm is involved in many cellular processes, which is in congruence with the number of protein interaction partners.


Assuntos
Proteínas Arqueais/metabolismo , Haloferax volcanii/metabolismo , Multimerização Proteica/fisiologia , RNA Arqueal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Arqueais/genética , Haloferax volcanii/genética , Espectrometria de Massas , Poli U/genética , Poli U/metabolismo , Ligação Proteica/fisiologia , RNA Arqueal/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA