Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Chembiochem ; : e202400273, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924297

RESUMO

A series of D-p-A indole-containing fluorescent probes were developed followed by an investigation of their photophysical properties and compounds' suitability for subcellular imaging in living cells. We demonstrate that the preference for mitochondrial localization was lost when morpholine was substituted, resulting in the accumulation of the molecule in the lysosomes. However, interestingly, the presence of a nitro group led to their localization within the lipid droplets despite the presence of the morpholine pendant. We also showcase the probes' sensitivity to pH, the influence of added chloroquine, and the temperature response on the changes in fluorescence intensity within lysosomes. The design of the probes with strong intramolecular charge transfer and substantial Stokes shift could facilitate extensive application in various cellular lysosomal models and contribute to a better understanding of the mechanisms involved in stimuli-responsive diseases.

2.
Chembiochem ; 25(2): e202300698, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37889156

RESUMO

Using high-fidelity, permeable, lipophilic, and bright fluorophores for imaging lipid droplets (LDs) in tissues holds immense potential in diagnosing conditions such as diabetic or alcoholic fatty liver disease. In this work, we utilized linear and Λ-shaped polarity-sensitive fluorescent probes for imaging LDs in both cellular and tissue environments, specifically in rats with diabetic and alcoholic fatty liver disease. The fluorescent probes possess several key characteristics, including high permeability, lipophilicity, and brightness, which make them well-suited for efficient LD imaging. Notably, the probes exhibit a substantial Stokes shift, with 143 nm for DCS and 201 nm for DCN with selective targeting of the lipid droplets. Our experimental investigations successfully differentiated morphological variations between diseased and normal tissues in three distinct tissue types: liver, adipose, and small intestine. They could help provide pointers for improved detection and understanding of LD-related pathologies.


Assuntos
Diabetes Mellitus , Fígado Gorduroso Alcoólico , Ratos , Animais , Gotículas Lipídicas , Corantes Fluorescentes
3.
Chembiochem ; 24(15): e202300084, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37067194

RESUMO

Hypochlorous acid (HOCl) is critical for maintaining immune system balance, but it can harm mitochondria by hindering enzyme activity, leading to decreased ATP and increased cell death. In this study, we have designed a fluorophore with a pyridinium scaffold for selective staining of the mitochondria and to detect hypochlorite. The fluorophore exhibits strong solvatochromic emission due to intramolecular charge transfer and excellent sub-cellular localization in the mitochondria. Additionally, it shows a rapid response to HOCl with high selectivity among different reactive oxygen/nitrogen compounds with a detection limit of 2.31 µM. Moreover, it is also utilized for the exogenous and endogenous detection of HOCl in live cells, which may help study the role of hypochlorite in organelles at the cellular level. DFT and TDDFT calculations have been carried out to understand the relationship between the structure and properties of the cationic probes with respect to the α-cyano substitution and extension of π-conjugation. The selective detection of HOCl by C4 over other cationic probes has also been well-demonstrated, showing how the binding of HOCl affects the electronic properties of C4 through the analysis of non-bonding orbitals (NBO) population, electrostatic potential surface (ESP), and density of states (DOS) projected DOS investigations.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Humanos , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Células HeLa
4.
Org Biomol Chem ; 21(34): 6995-7004, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584648

RESUMO

A series of novel N-sulfonyl pyridinium fluorophores were designed, synthesized, and explored in terms of their ability to bind with serum albumins. Upon binding the fluorophores with BSA, noticeable emission wavelength or intensity changes accompanied by color changes were observed. Competitive binding studies revealed that the fluorophore selectively binds to the warfarin site, but the binding affinity also depends on the nature of the scaffold. Additionally, the fluorophores were employed to detect spiked serum albumin in artificial urine. Cellular imaging experiments indicated that the fluorophores accumulate within lipid droplets (LDs), suggesting their potential as promising biomarkers for lipid droplets. Furthermore, the fluorescence intensity, number, and size of LDs increased upon serum starvation.


Assuntos
Gotículas Lipídicas , Albumina Sérica , Gotículas Lipídicas/metabolismo , Albumina Sérica/metabolismo , Corantes Fluorescentes/metabolismo , Ligação Competitiva
5.
Org Biomol Chem ; 21(42): 8554-8562, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853800

RESUMO

Studying the viscosity of lipid droplets (LDs) provides insights into various diseases associated with LD viscosity. Ferroptosis is one such process in which LD viscosity increases due to the abnormal accumulation of lipid ROS (reactive oxygen species) caused by peroxidation. For investigating the LD imaging and ferroptosis, we developed two molecules (NNS and DNS) that show significant Stokes shifts (182-232 nm) and utilized them for sub-cellular imaging. Excellent localization is noted with the lipid droplets. Subsequently, DNS was used to monitor the variations in the LD viscosity during erastin-induced ferroptosis followed by ferroptosis inhibition. Additionally, we explored variations in the LD quantity, size, and accumulation when subjected to oleic acid stimulation. Extensive DFT and TDDFT investigations have been employed to understand the effect of NO2 substitution on the linear and branched molecular derivatives. Our results with the improved lipophilic fluorophore, exhibiting excellent colocalization with LDs, offer valuable insights into sensing erastin-induced ferroptosis and have the potential for real-time diagnostic applications.


Assuntos
Ferroptose , Gotículas Lipídicas , Peroxidação de Lipídeos , Piperazinas/farmacologia , Espécies Reativas de Oxigênio
6.
Org Biomol Chem ; 21(10): 2220-2231, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36805145

RESUMO

Two rhodamine-phenothiazine conjugates, RP1 and RP2, were synthesized, and their photophysical properties, subcellular localization, and photocytotoxicity were investigated. We observed robust localization of RP1 in mitochondria and dual localization in mitochondria and lysosomes with RP2 in live cells. Live cell imaging with these probes allowed us to track the dynamics of mitochondria and lysosomes during ROS-induced mitochondrial damage and the subsequent lysosomal digestion of the damaged mitochondria. The fluorophores also demonstrated preferential accumulation in cancer cells compared to normal cells and had strong photo-cytotoxicity. However, no cytotoxicity was observed in the dark. The mitochondrial staining and light-induced ROS production were not limited to mammalian cell lines, but were also observed in the animal model C. elegans. The study demonstrated the potential applications of these probes in visualizing the mitochondria-lysosome cross-talk after ROS production and for photodynamic therapy.


Assuntos
Caenorhabditis elegans , Lisossomos , Animais , Caenorhabditis elegans/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Mamíferos/metabolismo
7.
Org Biomol Chem ; 21(41): 8393-8402, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819137

RESUMO

Lipid droplets (LDs) have emerged as major regulators of cellular metabolism, encompassing lipid storage, membrane synthesis, viral replication, and protein degradation. Exclusive studies have suggested a direct link between LDs and cancer, as a notable abundance of LDs is found in cancerous cells. Therefore, monitoring the location, distribution, and movements of LDs is of paramount importance for understanding their involvement in biological processes. To target LDs, we designed and synthesized fluorophores with a styryl scaffold bearing electron-donating amino groups and pyridine-N-oxide, a zwitterionic acceptor moiety. We explored their photophysical properties in various solvents and conducted systematic DFT calculations on the synthesized fluorescent molecules, comparing them with neutral pyridine and cationic pyridinium styryl dyes. The results demonstrate that diphenylaminostyryl pyridine-N-oxide (TNO) shows excellent imaging of LDs, in contrast to the behavior of cationic styrylpyridinium (TNC), which primarily localizes within the mitochondria. Notably, pyridine N-oxide offers several benefits: an increased dipole moment facilitating charge separation between donors and acceptors, substantial HOMO and LUMO stabilization, improved water solubility, favorable redox properties, and bathochromic-shifted absorption/emission spectra, showing promise as a fluorescent tool for probing the cellular-biological realm.


Assuntos
Corantes Fluorescentes , Gotículas Lipídicas , Gotículas Lipídicas/metabolismo , Corantes Fluorescentes/metabolismo , Piridinas , Óxidos
8.
BMC Biol ; 20(1): 177, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948971

RESUMO

BACKGROUND: Kinesin-3 family motors drive diverse cellular processes and have significant clinical importance. The ATPase cycle is integral to the processive motility of kinesin motors to drive long-distance intracellular transport. Our previous work has demonstrated that kinesin-3 motors are fast and superprocessive with high microtubule affinity. However, chemomechanics of these motors remain poorly understood. RESULTS: We purified kinesin-3 motors using the Sf9-baculovirus expression system and demonstrated that their motility properties are on par with the motors expressed in mammalian cells. Using biochemical analysis, we show for the first time that kinesin-3 motors exhibited high ATP turnover rates, which is 1.3- to threefold higher compared to the well-studied kinesin-1 motor. Remarkably, these ATPase rates correlate to their stepping rate, suggesting a tight coupling between chemical and mechanical cycles. Intriguingly, kinesin-3 velocities (KIF1A > KIF13A > KIF13B > KIF16B) show an inverse correlation with their microtubule-binding affinities (KIF1A < KIF13A < KIF13B < KIF16B). We demonstrate that this differential microtubule-binding affinity is largely contributed by the positively charged residues in loop8 of the kinesin-3 motor domain. Furthermore, microtubule gliding and cellular expression studies displayed significant microtubule bending that is influenced by the positively charged insert in the motor domain, K-loop, a hallmark of kinesin-3 family. CONCLUSIONS: Together, we propose that a fine balance between the rate of ATP hydrolysis and microtubule affinity endows kinesin-3 motors with distinct mechanical outputs. The K-loop, a positively charged insert in the loop12 of the kinesin-3 motor domain promotes microtubule bending, an interesting phenomenon often observed in cells, which requires further investigation to understand its cellular and physiological significance.


Assuntos
Cinesinas , Microtúbulos , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cinesinas/genética , Mamíferos , Microtúbulos/metabolismo , Ligação Proteica
9.
Org Biomol Chem ; 20(35): 7047-7055, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35851393

RESUMO

The mitochondria and endoplasmic reticulum (ER) are highly dynamic subcellular structures essential for several biological functions. The development of non-toxic, wash-free fluorophores to visualize these structures inside cells aid in understanding their localization and dynamics in diverse cellular processes. In this paper, we report the synthesis and characterization of lutidine-based cationic fluorophores bearing push-pull substituents exhibiting emission in green and red wavelength regions and their subcellular localization in living cells. The confocal imaging of the molecules in a cellular domain reveals the robust localization of three molecules (2, 4 and 5) in the mitochondria and two molecules with polyfluorophenyl substituents (6 and 7) in the ER. At the same time, the other two molecules (1 and 3) showed non-specific imaging. These molecules can also be used to sense the altered viscosity of the stressed ER and investigate its dynamics.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/ultraestrutura
10.
Org Biomol Chem ; 19(46): 10090-10096, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610076

RESUMO

The 'powerhouses' of cell, mitochondria have seen an upsurge of interest in investigations pertaining to the imaging and mapping of physiological processes. By utilizing sterol-modified rhodamine, we have performed the live-cell imaging of mitochondria without dependence on a membrane potential. The sterol probes are highly biocompatible, and they can track the mitochondrial live-cell dynamics in a background-free manner with improved brightness and impressive contrast. This is the first attempt to study the stress response using a direct fluorescence readout with bio-conjugates of rhodamine inside mitochondria. The results pave the way for developing different sterol markers for understanding cellular responses and function.


Assuntos
Rastreamento de Células/métodos , Corantes Fluorescentes/química , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Estresse Oxidativo , Rodaminas/química , Animais , Células COS , Chlorocebus aethiops
11.
Org Biomol Chem ; 19(15): 3389-3395, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33555275

RESUMO

Visualization of sub-cellular organelles allows the determination of various cellular processes and the underlying mechanisms. Herein, we report a fluorescent probe, bearing push-pull substituents emitting at 600 nm and its application in cellular imaging. The probe shows dual imaging of mitochondria and nucleoli and maps mitochondrial viscosity in live cells under various physiological variations and show minimum cytotoxicity. Nucleolar staining is confirmed by RNAase digestion.


Assuntos
Corantes Fluorescentes/química , Mitocôndrias/química , Imagem Óptica , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Humanos , Lipopolissacarídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Estaurosporina/farmacologia , Viscosidade
12.
Org Biomol Chem ; 18(29): 5608-5616, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32648565

RESUMO

Lipid droplets (LDs), the lipid-rich intracellular organelles, serve to regulate many physiological processes and therefore attention has been attracted towards their selective detection. We report positively solvatochromic lipophilic dyes, based on the push-pull framework containing coumarin-pyridine heterocycles for selective live-cell imaging of lipid droplets (LDs) in Cos-7 and McA-RH7777 cells at ultralow concentrations (200 nM). The fluorescent probes show a remarkable increase in fluorescence intensity with time with the hydrophobic core of the lipid droplets contributing to the observed intensity enhancement. The simple structural framework, red emission, strong Stokes shift (>80 nm), and excellent biocompatibility highlight their significance as a versatile imaging tool for studying lipid droplets (LDs).


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Gotículas Lipídicas/química , Imagem Óptica , Animais , Células Cultivadas , Corantes Fluorescentes/síntese química , Haplorrinos , Microscopia de Fluorescência , Estrutura Molecular , Ratos
13.
Biophys J ; 116(6): 1115-1126, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30824116

RESUMO

Intracellular cargo transport by kinesin family motor proteins is crucial for many cellular processes, particularly vesicle transport in axons and dendrites. In a number of cases, the transport of specific cargo is carried out by two classes of kinesins that move at different speeds and thus compete during transport. Despite advances in single-molecule characterization and modeling approaches, many questions remain regarding the effect of intermotor tension on motor attachment/reattachment rates during cooperative multimotor transport. To understand the motor dynamics underlying multimotor transport, we analyzed the complexes of kinesin-1 and kinesin-3 motors attached through protein scaffolds moving on immobilized microtubules in vitro. To interpret the observed behavior, simulations were carried out using a model that incorporated motor stepping, attachment/detachment rates, and intermotor force generation. In single-molecule experiments, isolated kinesin-3 motors moved twofold faster and had threefold higher landing rates than kinesin-1. When the positively charged loop 12 of kinesin-3 was swapped with that of kinesin-1, the landing rates reversed, indicating that this "K-loop" is a key determinant of the motor reattachment rate. In contrast, swapping loop 12 had negligible effects on motor velocities. Two-motor complexes containing one kinesin-1 and one kinesin-3 moved at different speeds depending on the identity of their loop 12, indicating the importance of the motor reattachment rate on the cotransport speed. Simulations of these loop-swapped motors using experimentally derived motor parameters were able to reproduce the experimental results and identify best fit parameters for the motor reattachment rates for this geometry. Simulation results also supported previous work, suggesting that kinesin-3 microtubule detachment is very sensitive to load. Overall, the simulations demonstrate that the transport behavior of cargo carried by pairs of kinesin-1 and -3 motors are determined by three properties that differ between these two families: the unloaded velocity, the load dependence of detachment, and the motor reattachment rate.


Assuntos
Cinesinas/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Modelos Biológicos
14.
Proc Natl Acad Sci U S A ; 111(15): 5562-7, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706892

RESUMO

The kinesin-3 family is one of the largest among the kinesin superfamily and its members play important roles in a wide range of cellular transport activities, yet the molecular mechanisms of kinesin-3 regulation and cargo transport are largely unknown. We performed a comprehensive analysis of mammalian kinesin-3 motors from three different subfamilies (KIF1, KIF13, and KIF16). Using Forster resonance energy transfer microscopy in live cells, we show for the first time to our knowledge that KIF16B motors undergo cargo-mediated dimerization. The molecular mechanisms that regulate the monomer-to-dimer transition center around the neck coil (NC) segment and its ability to undergo intramolecular interactions in the monomer state versus intermolecular interactions in the dimer state. Regulation of NC dimerization is unique to the kinesin-3 family and in the case of KIF13A and KIF13B requires the release of a proline-induced kink between the NC and subsequent coiled-coil 1 segments. We show that dimerization of kinesin-3 motors results in superprocessive motion, with average run lengths of ∼10 µm, and that this property is intrinsic to the dimeric kinesin-3 motor domain. This finding opens up studies on the mechanistic basis of motor processivity. Such high processivity has not been observed for any other motor protein and suggests that kinesin-3 motors are evolutionarily adapted to serve as the marathon runners of the cellular world.


Assuntos
Evolução Biológica , Proteínas de Transporte/química , Cinesinas/química , Microtúbulos/metabolismo , Modelos Moleculares , Animais , Transporte Biológico/fisiologia , Células COS , Chlorocebus aethiops , Dimerização , Transferência Ressonante de Energia de Fluorescência , Cinética , Microscopia de Fluorescência
15.
Biophys J ; 109(8): 1537-40, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488644

RESUMO

Kinesin superfamily members play important roles in many diverse cellular processes, including cell motility, cell division, intracellular transport, and regulation of the microtubule cytoskeleton. How the properties of the family-defining motor domain of distinct kinesins are tailored to their different cellular roles remains largely unknown. Here, we employed molecular-dynamics simulations coupled with energetic calculations to infer the family-specific interactions of kinesin-1 and kinesin-3 motor domains with microtubules in different nucleotide states. We then used experimental mutagenesis and single-molecule motility assays to further assess the predicted residue-wise determinants of distinct kinesin-microtubule binding properties. Collectively, our results identify residues in the L8, L11, and α6 regions that contribute to family-specific microtubule interactions and whose mutation affects motor-microtubule complex stability and processive motility (the ability of an individual motor to take multiple steps along its microtubule filament). In particular, substitutions of prominent kinesin-3 residues with those found in kinesin-1, namely, R167S/H171D, K266D, and R346M, were found to decrease kinesin-3 processivity 10-fold and thus approach kinesin-1 levels.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Cinesinas/genética , Simulação de Dinâmica Molecular , Mutagênese , Mutação , Domínios e Motivos de Interação entre Proteínas , Tubulina (Proteína)/metabolismo
16.
Biophys J ; 106(12): 2636-43, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24940781

RESUMO

Long-range transport in cells is achieved primarily through motor-based transport along a network of microtubule tracks. Targeted transport by kinesin motors can be correlated with posttranslational modifications (PTMs) of the tubulin subunits in specific microtubules. To directly examine the influence of specific PTMs on kinesin-1 motility, we generated tubulin subunits that were either enriched in or lacking acetylation of α-tubulin lysine 40 (K40) or detyrosination of the α-tubulin C-terminal tail. We show that K40 acetylation does not result in significant changes in kinesin-1's landing rate or motility parameters (velocity and run length) across experimental conditions. In contrast, detyrosination causes a moderate increase in kinesin-1's landing rate. The fact that the effects of detyrosination are dampened by prior K40 acetylation indicates that the combination of PTMs may be an important aspect of the functional output of microtubule heterogeneity. Importantly, our results indicate that the moderate influences that single PTMs have on kinesin-1 in vitro do not explain the strong correlation between specific PTMs and kinesin-1 transport in cells. Thus, additional mechanisms for regulating kinesin-1 transport in cells must be explored in future work.


Assuntos
Cinesinas/metabolismo , Lisina/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina/metabolismo , Acetilação , Animais , Bovinos , Células HeLa , Humanos , Microtúbulos/metabolismo , Transporte Proteico , Ratos , Tubulina (Proteína)/química
17.
J Mater Chem B ; 12(8): 2028-2041, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38319378

RESUMO

The endoplasmic reticulum (ER) and lipid droplets (LDs) intricately interact in cellular processes, with the ER serving as a hub for lipid synthesis and LDs acting as storage organelles for lipids. Developing fluorescent probes that can simultaneously visualise the ER and LDs provides a means for real-time and specific visualisation of these subcellular organelles and elucidating their interaction. Herein, we present synthetically simple and novel donor-π-acceptor styryl fluorophores (PFC, PFN and PFB) incorporating pentafluorophenyl (PFP) to demonstrate exquisite discriminative imaging of ER and LD with a single excitation wavelength. The PFP moiety aids the ER selectivity, while the overall hydrophobicity of the molecule aids in the LD targeting. Furthermore, the fluorophores are utilised in studying the changes in size, distribution, and biogenesis of LDs within ER regions after treatment with oleic acid. Strong emission, lower concentrations ∼100 nM requirement, minimal cytotoxicity, and photostability make these fluorophores excellent tools for probing sub-cellular dynamics.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Ácido Oleico
18.
J Mater Chem B ; 12(19): 4698-4707, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38652007

RESUMO

This paper explores the use of a di-cationic fluorophore for visualizing mitochondria in live cells independent of membrane potential. Through the synthesized di-cationic fluorophore, we investigate the monitoring of viscosity, ferroptosis, stress-induced mitophagy, and lysosomal uptake of damaged mitochondria. The designed fluorophore is based on DQAsomes, cationic vesicles responsible for transporting drugs and DNA to mitochondria. The symmetric fluorophores possess two charge centres separated by an alkyl chain and are distinguished by a pyridinium group for mitochondrial selectivity, the C-12 alkyl substitution for membrane affinity, and an electron donor-π-acceptor fluorescent scaffold for intramolecular charge transfer. The synthesized fluorophores, PP and NP, emit wavelengths exceeding 600 nm, with a significant Stokes shift (130-211 nm), and NP demonstrates near-infrared emission (∼690 nm). Our study underscores the potential of these fluorophores for live-cell imaging, examining physiological responses such as viscosity and ferroptosis, and highlights their utility in investigating mitophagy damage and lysosomal uptake.


Assuntos
Ferroptose , Mitocôndrias , Mitofagia , Mitocôndrias/química , Mitocôndrias/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho , Animais , Células COS , Chlorocebus aethiops , Viscosidade , Sobrevivência Celular , Elastina/genética , Elastina/metabolismo
19.
Photochem Photobiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385897

RESUMO

Fluorophores bearing cationic pendants, such as the pyridinium group, tend to preferentially accumulate in mitochondria, whereas those with pentafluorophenyl groups display a distinct affinity for the endoplasmic reticulum. In this study, we designed fluorophores incorporating pyridinium and pentafluorophenyl pendants and examined their impact on sub-cellular localization. Remarkably, the fluorophores exhibited a notable propensity for the mitochondrial membrane. Furthermore, these fluorophores revealed dual functionality by facilitating the detection of viscosity changes within the sub-cellular environment and serving as heavy-atom-free photosensitizers. With easy chemical tunability, wash-free imaging, and a favorable signal-to-noise ratio, these fluorophores are valuable tools for imaging mitochondria and investigating their cellular processes.

20.
Proc Natl Acad Sci U S A ; 106(46): 19381-6, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19864630

RESUMO

Intracellular transport is interspersed with frequent reversals in direction due to the presence of opposing kinesin and dynein motors on organelles that are carried as cargo. The cause and the mechanism of reversals are unknown, but are a key to understanding how cargos are delivered in a regulated manner to specific cellular locations. Unlike established single-motor biophysical assays, this problem requires understanding of the cooperative behavior of multiple interacting motors. Here we present measurements inside live Dictyostelium cells, in a cell extract and with purified motors to quantify such an ensemble function of motors. We show through precise motion analysis that reversals during endosome motion are caused by a tug-of-war between kinesin and dynein. Further, we use a combination of optical trap-based force measurements and Monte Carlo simulations to make the surprising discovery that endosome transport uses many (approximately four to eight) weak and detachment-prone dyneins in a tug-of-war against a single strong and tenacious kinesin. We elucidate how this clever choice of dissimilar motors and motor teams achieves net transport together with endosome fission, both of which are important in controlling the balance of endocytic sorting. To the best of our knowledge, this is a unique demonstration that dynein and kinesin function differently at the molecular level inside cells and of how this difference is used in a specific cellular process, namely endosome biogenesis. Our work may provide a platform to understand intracellular transport of a variety of organelles in terms of measurable quantities.


Assuntos
Dictyostelium/metabolismo , Dineínas/metabolismo , Endossomos/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Microesferas , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA