Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(15): 3936-3948.e10, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34192529

RESUMO

In this study we profiled vaccine-induced polyclonal antibodies as well as plasmablast-derived mAbs from individuals who received SARS-CoV-2 spike mRNA vaccine. Polyclonal antibody responses in vaccinees were robust and comparable to or exceeded those seen after natural infection. However, the ratio of binding to neutralizing antibodies after vaccination was greater than that after natural infection and, at the monoclonal level, we found that the majority of vaccine-induced antibodies did not have neutralizing activity. We also found a co-dominance of mAbs targeting the NTD and RBD of SARS-CoV-2 spike and an original antigenic-sin like backboost to spikes of seasonal human coronaviruses OC43 and HKU1. Neutralizing activity of NTD mAbs but not RBD mAbs against a clinical viral isolate carrying E484K as well as extensive changes in the NTD was abolished, suggesting that a proportion of vaccine-induced RBD binding antibodies may provide substantial protection against viral variants carrying single E484K RBD mutations.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , RNA Mensageiro/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Ligação Competitiva , Humanos , Imunoglobulina G/metabolismo , Mutação/genética , Domínios Proteicos , Hipermutação Somática de Imunoglobulina/genética
2.
Immunity ; 57(3): 587-599.e4, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38395697

RESUMO

It is thought that mRNA-based vaccine-induced immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wanes quickly, based mostly on short-term studies. Here, we analyzed the kinetics and durability of the humoral responses to SARS-CoV-2 infection and vaccination using >8,000 longitudinal samples collected over a 3-year period in New York City. Upon primary immunization, participants with pre-existing immunity mounted higher antibody responses faster and achieved higher steady-state antibody titers than naive individuals. Antibody kinetics were characterized by two phases: an initial rapid decay, followed by a stabilization phase with very slow decay. Booster vaccination equalized the differences in antibody concentration between participants with and without hybrid immunity, but the peak antibody titers decreased with each successive antigen exposure. Breakthrough infections increased antibodies to similar titers as an additional vaccine dose in naive individuals. Our study provides strong evidence that SARS-CoV-2 antibody responses are long lasting, with initial waning followed by stabilization.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Formação de Anticorpos , Vacinação , Imunização Secundária , Vacinas de mRNA , Anticorpos Antivirais
3.
Nature ; 602(7898): 682-688, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016197

RESUMO

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November 2021 in South Africa and Botswana, as well as in a sample from a traveller from South Africa in Hong Kong1,2. Since then, Omicron has been detected globally. This variant appears to be at least as infectious as Delta (B.1.617.2), has already caused superspreader events3, and has outcompeted Delta within weeks in several countries and metropolitan areas. Omicron hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness2,4-6. Here we investigated the virus-neutralizing and spike protein-binding activity of sera from convalescent, double mRNA-vaccinated, mRNA-boosted, convalescent double-vaccinated and convalescent boosted individuals against wild-type, Beta (B.1.351) and Omicron SARS-CoV-2 isolates and spike proteins. Neutralizing activity of sera from convalescent and double-vaccinated participants was undetectable or very low against Omicron compared with the wild-type virus, whereas neutralizing activity of sera from individuals who had been exposed to spike three or four times through infection and vaccination was maintained, although at significantly reduced levels. Binding to the receptor-binding and N-terminal domains of the Omicron spike protein was reduced compared with binding to the wild type in convalescent unvaccinated individuals, but was mostly retained in vaccinated individuals.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/virologia , Convalescença , Evasão da Resposta Imune/imunologia , Soros Imunes/imunologia , SARS-CoV-2/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vacina BNT162/administração & dosagem , Vacina BNT162/imunologia , COVID-19/transmissão , Feminino , Humanos , Imunização Secundária , Modelos Moleculares , Testes de Neutralização , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Nature ; 603(7902): 687-692, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35062015

RESUMO

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Assuntos
COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Cricetinae , Feminino , Humanos , Pulmão/patologia , Pulmão/virologia , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Carga Viral
5.
Nature ; 590(7844): 146-150, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33142304

RESUMO

In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in China and has since caused a pandemic of coronavirus disease 2019 (COVID-19). The first case of COVID-19 in New York City was officially confirmed on 1 March 2020 followed by a severe local epidemic1. Here, to understand seroprevalence dynamics, we conduct a retrospective, repeated cross-sectional analysis of anti-SARS-CoV-2 spike antibodies in weekly intervals from the beginning of February to July 2020 using more than 10,000 plasma samples from patients at Mount Sinai Hospital in New York City. We describe the dynamics of seroprevalence in an 'urgent care' group, which is enriched in cases of COVID-19 during the epidemic, and a 'routine care' group, which more closely represents the general population. Seroprevalence increased at different rates in both groups; seropositive samples were found as early as mid-February, and levelled out at slightly above 20% in both groups after the epidemic wave subsided by the end of May. From May to July, seroprevalence remained stable, suggesting lasting antibody levels in the population. Our data suggest that SARS-CoV-2 was introduced in New York City earlier than previously documented and describe the dynamics of seroconversion over the full course of the first wave of the pandemic in a major metropolitan area.


Assuntos
Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19/estatística & dados numéricos , COVID-19/epidemiologia , COVID-19/imunologia , Monitoramento Epidemiológico , SARS-CoV-2/imunologia , Adolescente , Adulto , Assistência Ambulatorial/estatística & dados numéricos , COVID-19/diagnóstico , COVID-19/virologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , População Urbana/estatística & dados numéricos , Adulto Jovem
6.
J Virol ; 96(2): e0142121, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669506

RESUMO

The public health burden caused by influenza virus infections is not adequately addressed with existing vaccines and antivirals. Identifying approaches that interfere with human-to-human transmission of influenza viruses remains a pressing need. The importance of neuraminidase (NA) activity for the replication and spread of influenza viruses led us to investigate whether broadly reactive human anti-NA monoclonal antibodies (MAbs) could affect airborne transmission of the virus using the guinea pig model. In that model, infection with recent influenza virus clinical isolates resulted in 100% transmission from inoculated donors to recipients in an airborne transmission setting. Anti-NA MAbs were administered either to the inoculated animals on days 1, 2, and 4 after infection or to the naive contacts on days 2 and 4 after donor infection. Administration of NA-1G01, a broadly cross-reactive anti-NA MAb, to either the donor or recipient reduced transmission of the A/New York City/PV02669/2019 (H1N1) and A/New York City/PV01148/2018 (H3N2) viruses. Administration of 1000-3C05, an anti-N1 MAb, to either the donor or recipient reduced transmission of A/New York City/PV02669/2019 (H1N1) virus but did not reduce transmission of A/New York City/PV01148 (H3N2) virus. Conversely, 229-2C06, an anti-N2 MAb, reduced transmission of A/New York City/PV01148 (H3N2) but did not impact transmission of A/New York City/PV02669/2019 (H1N1) virus. Our work demonstrates that anti-NA MAbs could be further developed into prophylactic or therapeutic agents to prevent influenza virus transmission to control viral spread. IMPORTANCE The burden of influenza remains substantial despite unremitting efforts to reduce the magnitude of seasonal influenza epidemics and prepare for pandemics. Although vaccination remains the mainstay of these efforts, current vaccines are designed to stimulate an immune response against the viral hemagglutinin. Interest in the role immunity against neuraminidase plays in influenza virus infection and transmission has recently surged. Human antibodies that bind broadly to neuraminidases of diverse influenza viruses and protect mice against lethal viral challenge have previously been characterized. Here, we show that three such antibodies inhibit the neuraminidase activity of recent isolates and reduce their airborne transmission in a guinea pig model. In addition to contributing to the accumulating support for incorporating neuraminidase as a vaccine antigen, these findings also demonstrate the potential of direct administration of anti-neuraminidase antibodies to individuals infected with influenza virus and to individuals for postexposure prophylaxis to prevent the spread of influenza virus.


Assuntos
Anticorpos Antivirais/uso terapêutico , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Reações Cruzadas , Cobaias , Humanos , Imunização Passiva , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/transmissão
7.
J Med Virol ; 94(4): 1606-1616, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34877674

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has sparked the rapid development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics. However, emerging variants pose the risk for target dropout and false-negative results secondary to primer/probe binding site (PBS) mismatches. The Agena MassARRAY® SARS-CoV-2 Panel combines reverse-transcription polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry to probe for five targets across N and ORF1ab genes, which provides a robust platform to accommodate PBS mismatches in divergent viruses. Herein, we utilize a deidentified data set of 1262 SARS-CoV-2-positive specimens from Mount Sinai Health System (New York City) from December 2020 to April 2021 to evaluate target results and corresponding sequencing data. Overall, the level of PBS mismatches was greater in specimens with target dropout. Of specimens with N3 target dropout, 57% harbored an A28095T substitution that is highly specific for the Alpha (B.1.1.7) variant of concern. These data highlight the benefit of redundancy in target design and the potential for target performance to illuminate the dynamics of circulating SARS-CoV-2 variants.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , COVID-19/epidemiologia , COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Variação Genética , Genoma Viral/genética , Humanos , Cidade de Nova Iorque/epidemiologia , Fosfoproteínas/genética , Poliproteínas/genética , RNA Viral/genética , SARS-CoV-2/genética , Proteínas Virais/genética
8.
J Med Virol ; 94(6): 2471-2478, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35171508

RESUMO

Saliva is a promising specimen for the detection of viruses that cause upper respiratory infections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to its cost-effectiveness and noninvasive collection. However, together with intrinsic enzymes and oral microbiota, children's unique dietary habits may introduce substances that interfere with diagnostic testing. To determine whether children's dietary choices impact SARS-CoV-2 molecular detection in saliva, we performed a diagnostic study that simulates testing of real-life specimens provided from healthy children (n = 5) who self-collected saliva at home before and at 0, 20, and 60 min after eating 20 foods they selected. Each of 72 specimens was split into two volumes and spiked with SARS-CoV-2-negative or SARS-CoV-2-positive clinical standards before side-by-side testing by reverse-transcription polymerase chain reaction matrix-assisted laser desorption ionization time-of-flight (RT-PCR/MALDI-TOF) assay. Detection of internal extraction control and SARS-CoV-2 nucleic acids was reduced in replicates of saliva collected at 0 min after eating 11 of 20 foods. Interference resolved at 20 and 60 min after eating all foods except hot dogs in one participant. This represented a significant improvement in the detection of nucleic acids compared to saliva collected at 0 min after eating (p = 0.0005). We demonstrate successful detection of viral nucleic acids in saliva self-collected by children before and after eating a variety of foods. Fasting is not required before saliva collection for SARS-CoV-2 testing by RT-PCR/MALDI-TOF, but waiting for 20 min after eating is sufficient for accurate testing. These findings should be considered for SARS-CoV-2 testing and broader viral diagnostics in saliva specimens.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Nasofaringe , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva , Manejo de Espécimes
9.
Clin Infect Dis ; 73(11): e4375-e4383, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33252647

RESUMO

BACKGROUND: Nosocomial respiratory virus outbreaks represent serious public health challenges. Rapid and precise identification of cases and tracing of transmission chains is critical to end outbreaks and to inform prevention measures. METHODS: We combined conventional surveillance with influenza A virus (IAV) genome sequencing to identify and contain a large IAV outbreak in a metropolitan healthcare system. A total of 381 individuals, including 91 inpatients and 290 healthcare workers (HCWs), were included in the investigation. RESULTS: During a 12-day period in early 2019, infection preventionists identified 89 HCWs and 18 inpatients as cases of influenza-like illness (ILI), using an amended definition without the requirement for fever. Sequencing of IAV genomes from available nasopharyngeal specimens identified 66 individuals infected with a nearly identical strain of influenza A H1N1pdm09 (43 HCWs, 17 inpatients, and 6 with unspecified affiliation). All HCWs infected with the outbreak strain had received the seasonal influenza virus vaccination. Characterization of 5 representative outbreak viral isolates did not show antigenic drift. In conjunction with IAV genome sequencing, mining of electronic records pinpointed the origin of the outbreak as a single patient and a few interactions in the emergency department that occurred 1 day prior to the index ILI cluster. CONCLUSIONS: We used precision surveillance to delineate a large nosocomial IAV outbreak, mapping the source of the outbreak to a single patient rather than HCWs as initially assumed based on conventional epidemiology. These findings have important ramifications for more-effective prevention strategies to curb nosocomial respiratory virus outbreaks.


Assuntos
Infecção Hospitalar , Influenza Humana , Infecção Hospitalar/prevenção & controle , Surtos de Doenças , Genômica , Hospitais , Humanos , Influenza Humana/prevenção & controle
10.
J Antimicrob Chemother ; 76(11): 2774-2777, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34368846

RESUMO

OBJECTIVES: As part of an active MRSA surveillance programme in our neonatal ICU, we identified nares surveillance cultures from two infants that displayed heterogeneity in methicillin resistance between isolated subclones that lacked mecA and mecC. METHODS: The underlying mechanism for the modified Staphylococcus aureus (MODSA) methicillin-resistance phenotype was investigated by WGS. RESULTS: Comparison of finished-quality genomes of four MODSA and four MSSA subclones demonstrated that the resistance changes were associated with unique truncating mutations in the gene encoding the cyclic diadenosine monophosphate phosphodiesterase enzyme GdpP or a non-synonymous substitution in the gene encoding PBP2. CONCLUSIONS: These two cases highlight the difficulty in identifying non-mecA, non-mecC-mediated MRSA isolates in the clinical microbiology laboratory, which leads to difficulties in implementing appropriate therapy and infection control measures.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias , Humanos , Recém-Nascido , Terapia Intensiva Neonatal , Staphylococcus aureus Resistente à Meticilina/genética , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus
11.
J Med Virol ; 93(1): 424-433, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584487

RESUMO

In December 2019, the 2019, a novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) first emerged in Wuhan, China. This has now spread worldwide and was declared a pandemic by March 2020. Initially, the pediatric population was described as a low risk for severe COVID-19. However, reports have emerged recently of cases of COVID-19 in children with a systemic inflammatory disease, with features that overlap with Kawasaki disease (KD). We describe the first 15 cases with the multi-systeminflammatory syndrome in children (MIS-C), temporally related to COVID-19, who presented for care to a tertiary pediatric referral center in New York City. We discuss the disproportionate burden of disease among Hispanic/Latino and Black/African American ancestry, the distinct cytokine signature across the disease spectrum (IL-1/IL-6), and the potential role and pathogenesis of SARS-CoV-2 in this new clinical entity.


Assuntos
COVID-19/complicações , Citocinas/imunologia , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia , Adolescente , COVID-19/epidemiologia , COVID-19/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Cidade de Nova Iorque/epidemiologia , Estudos Retrospectivos , Centros de Atenção Terciária , Adulto Jovem
12.
J Med Virol ; 93(2): 1158-1163, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32761908

RESUMO

We performed phylogenomic analysis of severe acute respiratory syndrome coronavirus-2 from 88 infected individuals across different regions of Colombia. Eleven different lineages were detected, suggesting multiple introduction events. Pangolin lineages B.1 and B.1.5 were the most frequent, with B.1 being associated with prior travel to high-risk areas.


Assuntos
COVID-19/virologia , Variação Genética , Genoma Viral , Filogenia , SARS-CoV-2/genética , Adulto , COVID-19/epidemiologia , COVID-19/transmissão , Colômbia/epidemiologia , Feminino , Geografia , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/genética , Viagem
13.
J Med Virol ; 93(9): 5481-5486, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33963565

RESUMO

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections continue, there is a substantial need for cost-effective and large-scale testing that utilizes specimens that can be readily collected from both symptomatic and asymptomatic individuals in various community settings. Although multiple diagnostic methods utilize nasopharyngeal specimens, saliva specimens represent an attractive alternative as they can rapidly and safely be collected from different populations. While saliva has been described as an acceptable clinical matrix for the detection of SARS-CoV-2, evaluations of analytic performance across platforms for this specimen type are limited. Here, we used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens. The platform demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of the platform and determined the limit of detection of the assay to be 1562.5 copies/ml. Furthermore, across the five individual target components of this assay, there was a range in analytic sensitivities for each target with the N2 target being the most sensitive. Overall, this system also demonstrated comparable performance when compared to the detection of SARS-CoV-2 RNA in saliva by the cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test (Roche). Together, we demonstrate that saliva represents an appropriate matrix for SARS-CoV-2 detection on the novel Agena system as well as on a conventional real-time RT-PCR assay. We conclude that the MassARRAY® system is a sensitive and reliable platform for SARS-CoV-2 detection in saliva, offering scalable throughput in a large variety of clinical laboratory settings.


Assuntos
Teste de Ácido Nucleico para COVID-19/normas , COVID-19/diagnóstico , Testes Diagnósticos de Rotina/normas , RNA Viral/genética , SARS-CoV-2/genética , Saliva/virologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Benchmarking , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Testes Diagnósticos de Rotina/instrumentação , Testes Diagnósticos de Rotina/métodos , Humanos , Limite de Detecção , Nasofaringe/virologia , Manejo de Espécimes/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
14.
J Clin Microbiol ; 58(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31694974

RESUMO

From 2015 to 2017, 11 confirmed brucellosis cases were reported in New York City, leading to 10 Brucella exposure risk events (Brucella events) in 7 clinical laboratories (CLs). Most patients had traveled to countries where brucellosis is endemic and presented with histories and findings consistent with brucellosis. CLs were not notified that specimens might yield a hazardous organism, as the clinicians did not consider brucellosis until they were notified that bacteremia with Brucella was suspected. In 3 Brucella events, the CLs did not suspect that slow-growing, small Gram-negative bacteria might be harmful. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), which has a limited capacity to identify biological threat agents (BTAs), was used during 4 Brucella events, which accounted for 84% of exposures. In 3 of these incidents, initial staining of liquid media showed Gram-positive rods or cocci, including some cocci in chains, suggesting streptococci. Over 200 occupational exposures occurred when the unknown isolates were manipulated and/or tested on open benches, including by procedures that could generate infectious aerosols. During 3 Brucella events, the CLs examined and/or manipulated isolates in a biological safety cabinet (BSC); in each CL, the CL had previously isolated Brucella Centers for Disease Control and Prevention recommendations to prevent laboratory-acquired brucellosis (LAB) were followed; no seroconversions or LAB cases occurred. Laboratory assessments were conducted after the Brucella events to identify facility-specific risks and mitigations. With increasing MALDI-TOF MS use, CLs are well-advised to adhere strictly to safe work practices, such as handling and manipulating all slow-growing organisms in BSCs and not using MALDI-TOF MS for identification until BTAs have been ruled out.


Assuntos
Brucella/isolamento & purificação , Brucelose/diagnóstico , Técnicas de Laboratório Clínico/normas , Infecção Laboratorial/microbiologia , Exposição Ocupacional/estatística & dados numéricos , Brucella/crescimento & desenvolvimento , Brucelose/etiologia , Contagem de Colônia Microbiana , Humanos , Cidade de Nova Iorque , Exposição Ocupacional/prevenção & controle , Fatores de Risco , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
J Med Virol ; 92(7): 699-702, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32314810

RESUMO

Neurologic sequelae can be devastating complications of respiratory viral infections. We report the presence of virus in neural and capillary endothelial cells in frontal lobe tissue obtained at postmortem examination from a patient infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Our observations of virus in neural tissue, in conjunction with clinical correlates of worsening neurologic symptoms, pave the way to a closer understanding of the pathogenic mechanisms underlying central nervous system involvement by SARS-CoV-2.


Assuntos
Ageusia/diagnóstico , Ataxia/diagnóstico , Betacoronavirus/patogenicidade , Infecções por Coronavirus/diagnóstico , Transtornos do Olfato/diagnóstico , Pneumonia Viral/diagnóstico , Convulsões/diagnóstico , Idoso , Ageusia/complicações , Ageusia/fisiopatologia , Ageusia/virologia , Ataxia/complicações , Ataxia/fisiopatologia , Ataxia/virologia , Betacoronavirus/genética , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/complicações , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Evolução Fatal , Lobo Frontal/irrigação sanguínea , Lobo Frontal/patologia , Lobo Frontal/virologia , Hospitalização , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/virologia , Masculino , Neurônios/patologia , Neurônios/virologia , Transtornos do Olfato/complicações , Transtornos do Olfato/fisiopatologia , Transtornos do Olfato/virologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Convulsões/complicações , Convulsões/fisiopatologia , Convulsões/virologia
16.
Antiviral Res ; 230: 105970, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-39067667

RESUMO

Variants of SARS-CoV-2 pose significant challenges in public health due to their increased transmissibility and ability to evade natural immunity, vaccine protection, and monoclonal antibody therapeutics. The emergence of the highly transmissible Omicron variant and subsequent subvariants, characterized by an extensive array of over 32 mutations within the spike protein, intensifies concerns regarding vaccine evasion. In response, multiple antiviral therapeutics have received FDA emergency use approval, targeting the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) regions, known to have relatively fewer mutations across novel variants. In this study, we evaluated the efficacy of nirmatrelvir (PF-07321332) and other clinically significant SARS-CoV-2 antivirals against a diverse panel of SARS-CoV-2 variants, encompassing the newly identified Omicron subvariants XBB1.5 and JN.1, using live-virus antiviral assays. Our findings demonstrate that while the last Omicron subvariants exhibited heightened pathogenicity in our animal model, nirmatrelvir and other clinically relevant antivirals consistently maintained their efficacy against all tested variants, including the XBB1.5 subvariant.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Hidroxilaminas , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , Animais , Hidroxilaminas/farmacologia , Hidroxilaminas/uso terapêutico , Camundongos , Humanos , Células Vero , Chlorocebus aethiops , COVID-19/virologia , Citidina/análogos & derivados , Citidina/farmacologia , Citidina/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Alanina/farmacologia , Alanina/análogos & derivados , Lactamas , Leucina , Nitrilas , Prolina
17.
Nat Commun ; 15(1): 5847, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992013

RESUMO

Sero-monitoring provides context to the epidemiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and changes in population immunity following vaccine introduction. Here, we describe results of a cross-sectional hospital-based study of anti-spike seroprevalence in New York City (NYC) from February 2020 to July 2022, and a follow-up period from August 2023 to October 2023. Samples from 55,092 individuals, spanning five epidemiological waves were analyzed. Prevalence ratios (PR) were obtained using Poisson regression. Anti-spike antibody levels increased gradually over the first two waves, with a sharp increase during the 3rd wave coinciding with SARS-CoV-2 vaccination in NYC resulting in seroprevalence levels >90% by July 2022. Our data provide insights into the dynamic changes in immunity occurring in a large and diverse metropolitan community faced with a new viral pathogen and reflects the patterns of antibody responses as the pandemic transitions into an endemic stage.


Assuntos
Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Cidade de Nova Iorque/epidemiologia , COVID-19/epidemiologia , COVID-19/imunologia , Estudos Soroepidemiológicos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Transversais , Adulto Jovem , Adolescente , Glicoproteína da Espícula de Coronavírus/imunologia , Criança , Pandemias , Pré-Escolar , Lactente , Idoso de 80 Anos ou mais , Vacinas contra COVID-19/imunologia
18.
Pract Lab Med ; 37: e00341, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37842331

RESUMO

Leishmaniasis is a complex vector-borne disease caused by various Leishmania species, affecting humans and animals. Current diagnostic methods have limitations, leading to potential misdiagnosis. Therefore, there is an urgent need for specific and sensitive diagnostic tools. We evaluated the sensitivity of a quantitative real-time PCR (qPCR) assay targeting the 18S gene in diverse clinical sample matrices. The assay showed a wide dynamic range and a limit of detection (LoD) of 1 parasite equivalent per milliliter (eq-p/mL) for all tested species. It exhibited high specificity for Leishmania DNA, with no amplification against other microorganisms. When applied to samples from patients with visceral and cutaneous leishmaniasis, the qPCR assay provided results that matched the reference methods and allowed estimation of parasite burdens. This assay holds promise for diagnosing and monitoring leishmaniasis by offering high sensitivity, specificity, and the ability to estimate parasitemia. Further studies are needed to enhance Leishmania molecular diagnostics and expand their coverage for improved clinical impact.

19.
J Fungi (Basel) ; 9(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623620

RESUMO

Candida auris is a globally emerging fungal pathogen that is associated with healthcare-related infections. The accurate and rapid detection of C. auris is crucial for effective infection prevention, control, and patient management. This study aimed to validate the analytical and diagnostic performance of the DiaSorin Molecular C. auris Detection Kit. The analytical specificity, sensitivity, and reproducibility of the assay were evaluated. The limit of detection (LOD) was determined to be 266 CFU/µL using the ZeptoMetrix Candida auris Z485 strain and standard calibration curves. The assay demonstrated high analytical specificity and showed no amplification against a diverse panel of bacteria and fungi. Clinical validation was conducted using deidentified residual axillary/groin surveillance culture specimens from C. auris culture-positive and culture-negative patients. The DiaSorin Molecular Detection Kit exhibited 100% agreement in sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) when compared to cultures coupled with MALDI-TOF identification. Intra- and inter-reproducibility testing demonstrated consistent and reliable diagnostic performance. This validated assay offers rapid and accurate detection of C. auris, facilitating timely implementation of infection control measures and appropriate patient care. The DiaSorin Molecular C. auris Detection Kit has the potential to aid in controlling the outbreaks caused by this emerging fungal pathogen. Providing a reliable diagnostic tool can contribute to the effective management and containment of C. auris infections in healthcare settings and ultimately improve patient outcomes.

20.
EBioMedicine ; 98: 104886, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37995467

RESUMO

BACKGROUND: The real-world impact of bivalent vaccines for wild type (WA.1) and Omicron variant (BA.5) is largely unknown in immunocompromised patients with Multiple Myeloma (MM). We characterize the humoral and cellular immune responses in patients with MM before and after receiving the bivalent booster, including neutralizing assays to identify patterns associated with continuing vulnerability to current variants (XBB1.16, EG5) in the current post-pandemic era. METHODS: We studied the humoral and cellular immune responses before and after bivalent booster immunization in 48 MM patients. Spike binding IgG antibody levels were measured by SARS-CoV-2 spike binding ELISA and neutralization capacity was assessed by a SARS-CoV-2 multi-cycle microneutralization assays to assess inhibition of live virus. We measured spike specific T-cell function using the QuantiFERON SARS-CoV-2 (Qiagen) assay as well as flow-cytometry based T-cell. In a subset of 38 patients, high-dimensional flow cytometry was performed to identify immune cell subsets associated with lack of humoral antibodies. FINDINGS: We find that bivalent vaccination provides significant boost in protection to the omicron variant in our MM patients, in a treatment specific manner. MM patients remain vulnerable to newer variants with mutations in the spike portion. Anti-CD38 and anti-BCMA therapies affect the immune machinery needed to produce antibodies. INTERPRETATION: Our study highlights varying immune responses observed in MM patients after receiving bivalent COVID-19 vaccination. Specifically, a subgroup of MM patients undergoing anti-CD38 and anti-BCMA therapy experience impairment in immune cells such DCs, B cells, NK cells and TFH cells, leading to an inability to generate adequate humoral and cellular responses to vaccination. FUNDING: National Cancer Institute (National Institutes of Health), National Institute of Allergy and Infectious Diseases (National Institutes of Health), NCI Serological Sciences Network for COVID-19 (SeroNet) and The Icahn School of Medicine at Mount Sinai.


Assuntos
COVID-19 , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Imunoglobulina G , Imunidade , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA