Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474906

RESUMO

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Assuntos
Meduloblastoma/irrigação sanguínea , Meduloblastoma/patologia , Neoplasias Meníngeas/irrigação sanguínea , Neoplasias Meníngeas/secundário , Aloenxertos , Animais , Linhagem Celular Tumoral , Quimiocina CCL2/metabolismo , Cromossomos Humanos Par 10/genética , Feminino , Humanos , Masculino , Meduloblastoma/genética , Camundongos SCID , Células Neoplásicas Circulantes , Parabiose
3.
Dev Dyn ; 247(2): 289-303, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29024245

RESUMO

BACKGROUND: In this study, we reveal a previously undescribed role of the HACE1 (HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1) tumor suppressor protein in normal vertebrate heart development using the zebrafish (Danio rerio) model. We examined the link between the cardiac phenotypes associated with hace1 loss of function to the expression of the Rho small family GTPase, rac1, which is a known target of HACE1 and promotes ROS production via its interaction with NADPH oxidase holoenzymes. RESULTS: We demonstrate that loss of hace1 in zebrafish via morpholino knockdown results in cardiac deformities, specifically a looping defect, where the heart is either tubular or "inverted". Whole-mount in situ hybridization of cardiac markers shows distinct abnormalities in ventricular morphology and atrioventricular valve formation in the hearts of these morphants, as well as increased expression of rac1. Importantly, this phenotype appears to be directly related to Nox enzyme-dependent ROS production, as both genetic inhibition by nox1 and nox2 morpholinos or pharmacologic rescue using ROS scavenging agents restores normal cardiac structure. CONCLUSIONS: Our study demonstrates that HACE1 is critical in the normal development and proper function of the vertebrate heart via a ROS-dependent mechanism. Developmental Dynamics 247:289-303, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Coração/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero , Cardiopatias Congênitas/etiologia , NADPH Oxidases , Proteínas Supressoras de Tumor , Proteínas rac1 de Ligação ao GTP
4.
Blood ; 126(5): 629-39, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26041741

RESUMO

Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting the CD19 B cell-associated protein have demonstrated potent activity against relapsed/refractory B-lineage acute lymphoblastic leukemia (B-ALL). Not all patients respond, and CD19-negative relapses have been observed. Overexpression of the thymic stromal lymphopoietin receptor (TSLPR; encoded by CRLF2) occurs in a subset of adults and children with B-ALL and confers a high risk of relapse. Recent data suggest the TSLPR signaling axis is functionally important, suggesting that TSLPR would be an ideal immunotherapeutic target. We constructed short and long CARs targeting TSLPR and tested efficacy against CRLF2-overexpressing B-ALL. Both CARs demonstrated activity in vitro, but only short TSLPR CAR T cells mediated leukemia regression. In vivo activity of the short CAR was also associated with long-term persistence of CAR-expressing T cells. Short TSLPR CAR treatment of mice engrafted with a TSLPR-expressing ALL cell line induced leukemia cytotoxicity with efficacy comparable with that of CD19 CAR T cells. Short TSLPR CAR T cells also eradicated leukemia in 4 xenograft models of human CRLF2-overexpressing ALL. Finally, TSLPR has limited surface expression on normal tissues. TSLPR-targeted CAR T cells thus represent a potent oncoprotein-targeted immunotherapy for high-risk ALL.


Assuntos
Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Receptores de Citocinas/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
N Engl J Med ; 366(3): 234-42, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22187960

RESUMO

BACKGROUND: Germline truncating mutations in DICER1, an endoribonuclease in the RNase III family that is essential for processing microRNAs, have been observed in families with the pleuropulmonary blastoma-family tumor and dysplasia syndrome. Mutation carriers are at risk for nonepithelial ovarian tumors, notably sex cord-stromal tumors. METHODS: We sequenced the whole transcriptomes or exomes of 14 nonepithelial ovarian tumors and noted closely clustered mutations in the region of DICER1 encoding the RNase IIIb domain of DICER1 in four samples. We then sequenced this region of DICER1 in additional ovarian tumors and in certain other tumors and queried the effect of the mutations on the enzymatic activity of DICER1 using in vitro RNA cleavage assays. RESULTS: DICER1 mutations in the RNase IIIb domain were found in 30 of 102 nonepithelial ovarian tumors (29%), predominantly in Sertoli-Leydig cell tumors (26 of 43, or 60%), including 4 tumors with additional germline DICER1 mutations. These mutations were restricted to codons encoding metal-binding sites within the RNase IIIb catalytic centers, which are critical for microRNA interaction and cleavage, and were somatic in all 16 samples in which germline DNA was available for testing. We also detected mutations in 1 of 14 nonseminomatous testicular germ-cell tumors, in 2 of 5 embryonal rhabdomyosarcomas, and in 1 of 266 epithelial ovarian and endometrial carcinomas. The mutant DICER1 proteins had reduced RNase IIIb activity but retained RNase IIIa activity. CONCLUSIONS: Somatic missense mutations affecting the RNase IIIb domain of DICER1 are common in nonepithelial ovarian tumors. These mutations do not obliterate DICER1 function but alter it in specific cell types, a novel mechanism through which perturbation of microRNA processing may be oncogenic. (Funded by the Terry Fox Research Institute and others.).


Assuntos
RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Neoplasias Ovarianas/genética , Ribonuclease III/genética , Tumor de Células de Sertoli-Leydig/genética , Carcinossarcoma/genética , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , MicroRNAs/metabolismo , Neoplasias Embrionárias de Células Germinativas/genética , Rabdomiossarcoma/genética , Análise de Sequência de DNA
6.
Semin Cancer Biol ; 22(5-6): 437-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22554796

RESUMO

Translational regulation is increasingly recognized as a critical mediator of gene expression. It endows cells with the ability to decide when a particular protein is expressed, thereby ensuring proper and prompt cellular responses to environmental cues. This ability to reprogram protein synthesis and to permit the translation of the respective regulatory messages is particularly important in complex changing environments, including embryonic development, wound healing and environmental stress. Not surprisingly, mistakes in this process can lead to cancer. This review will focus on the mechanisms of translational control operating in normal and cancer cells. We discuss the possibility that progression of primary epithelial tumors into a motile mesenchymal-like phenotype during the invasive phase of metastasis is driven, in part, by a switch from cap-dependent to cap-independent translation.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Biossíntese de Proteínas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Biossíntese de Proteínas/efeitos dos fármacos
7.
Apoptosis ; 18(3): 324-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23179179

RESUMO

Recently, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) has been shown to be a potential candidate for cancer therapy. TRAIL induces apoptosis in various cancer cells but not in normal tissues. Here we show that HCT116 and SW480 cells with a deficient mitochondrial apoptotic pathway were resistant to TRAIL-induced apoptosis, whereas HCT116 and SW480 cells with a functional mitochondrial apoptotic pathway underwent apoptosis upon exposure to TRAIL. Surprisingly, TRAIL induced phenotypic changes in cells with a dysfunctional mitochondrial apoptotic pathway, including membrane blebbing and a transient loss of adhesion properties to the substratum. Accordingly, TRAIL stimulated the ability of these cells to migrate. This behavior was the consequence of a transient TRAIL-induced ROCK1 cleavage. In addition, we report that Bax-deficient HCT116 cells exposed to TRAIL for a prolonged period lost their sensitivity to TRAIL as a result of downregulation of TRAIL receptor expression, and became resistant to combination of TRAIL and other drugs such as MG-132 and bortezomib. These findings may have important consequences for TRAIL anti-cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Caspase 3/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Mitocôndrias/metabolismo , Quinases Associadas a rho/metabolismo
8.
J Pathol ; 228(1): 119-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22374738

RESUMO

Infantile fibrosarcoma (IFS; also known as cellular congenital mesoblastic nephroma, CMN, when in the kidney) is a rare, undifferentiated tumour often characterized by the ETV6-NTRK3 fusion transcript. Our goal was to identify downstream pathways, diagnostic markers and potential therapeutic targets for IFS/CMN. Global gene expression, reverse-phase protein array and ETV6-NTRK3 fusion analyses were performed on 14 IFS/CMN and compared with 41 other paediatric renal tumours. These analyses confirm significant receptor tyrosine kinase (RTK) activation, with evidence of PI3-Akt, MAPK and SRC activation. In particular, GAB2 docking protein, STAT5-pTyr-694, STAT3-pSer-729 and YAP-pSer-127 were elevated, and TAZ-pSer-89 was decreased. This provides mRNA and proteomic evidence that GAB2, STAT activation and phosphorylation of the Hippo pathway transcription co-activators YAP and TAZ contribute to the RTK signal transduction in IFS/CMN. All IFS/CMN tumours displayed a distinctive gene expression pattern that may be diagnostically useful. Unexpectedly, abundant ETV6-NTRK3 transcript copies were present in only 7/14 IFS, with very low copy number in 3/14. An additional 4/14 were negative by RT-PCR and absence of ETV6-NTRK3 was confirmed by FISH for both ETV6 and NTRK3. Therefore, molecular mechanisms other than ETV6-NTRK3 fusion are responsible for the development of some IFS/CMNs and the absence of ETV6-NTRK3 fusion products should not exclude IFS/CMN as a diagnosis.


Assuntos
Neoplasias Renais/genética , Nefroma Mesoblástico/genética , Receptor trkC/metabolismo , Biomarcadores Tumorais/metabolismo , DNA de Neoplasias/análise , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Hibridização in Situ Fluorescente , Neoplasias Renais/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Nefroma Mesoblástico/metabolismo , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptor trkC/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Variante 6 da Proteína do Fator de Translocação ETS
9.
Cancer Cell ; 2(5): 367-76, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12450792

RESUMO

We report that human secretory breast carcinoma (SBC), a rare subtype of infiltrating ductal carcinoma, expresses the ETV6-NTRK3 gene fusion previously cloned in pediatric mesenchymal cancers. This gene fusion encodes a chimeric tyrosine kinase with potent transforming activity in fibroblasts. ETV6-NTRK3 expression was confirmed in 12 (92%) of 13 SBC cases, but not in other ductal carcinomas. Retroviral transfer of ETV6-NTRK3 (EN) into murine mammary epithelial cells resulted in transformed cells that readily formed tumors in nude mice. Phenotypically, tumors produced glands and expressed epithelial antigens, confirming that EN transformation is compatible with epithelial differentiation. This represents a recurrent chromosomal rearrangement and expression of a dominantly acting oncogene as a primary event in human breast carcinoma.


Assuntos
Fusão Gênica Artificial , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Proteínas de Ligação a DNA/genética , Receptor trkC/genética , Proteínas Repressoras/genética , Células 3T3 , Adolescente , Adulto , Idoso , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Criança , Cromossomos Humanos Par 12 , Cromossomos Humanos Par 15 , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-ets , Receptor trkC/química , Receptor trkC/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Retroviridae/genética , Translocação Genética , Variante 6 da Proteína do Fator de Translocação ETS
10.
BMC Biol ; 8: 149, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21176148

RESUMO

BACKGROUND: Discovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs) regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'. RESULTS: We show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs), as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA), can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb) in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation. CONCLUSIONS: We conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long, intergenic transcribed regions that could be involved in neoplastic transformation.


Assuntos
Genoma Humano , Anotação de Sequência Molecular/normas , RNA Nuclear/genética , Adolescente , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Encéfalo/metabolismo , Drosophila/genética , Genoma Humano/genética , Genoma de Inseto , Humanos , Células K562 , Bases de Conhecimento , Fígado/metabolismo , Anotação de Sequência Molecular/tendências , Metástase Neoplásica/genética , RNA/genética , RNA Mitocondrial , RNA Nuclear/metabolismo , RNA Ribossômico/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Análise de Sequência de RNA/normas
11.
Curr Oncol ; 28(1): 346-366, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435412

RESUMO

Neurotrophic tyrosine receptor kinase gene fusions (NTRK) are oncogenic drivers present at a low frequency in most tumour types (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., infantile fibrosarcoma [IFS]) and considered mutually exclusive with other common oncogenic drivers. Health Canada recently approved two tyrosine receptor kinase (TRK) inhibitors, larotrectinib (for adults and children) and entrectinib (for adults), for the treatment of solid tumours harbouring NTRK gene fusions. In Phase I/II trials, these TRK inhibitors have demonstrated promising overall response rates and tolerability in patients with TRK fusion cancer who have exhausted other treatment options. In these studies, children appear to have similar responses and tolerability to adults. In this report, we provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor for pediatric patients with solid tumours. We focus on three pediatric tumour types: non-rhabdomyosarcoma soft tissue sarcoma/unspecified spindle cell tumours including IFS, differentiated thyroid carcinoma, and glioma. We also propose a tumour-agnostic consensus based on the probability of the tumour harbouring an NTRK gene fusion. For children with locally advanced or metastatic TRK fusion cancer who have either failed upfront therapy or lack satisfactory treatment options, TRK inhibitor therapy should be considered.


Assuntos
Neoplasias , Receptor trkA , Biomarcadores , Canadá , Criança , Consenso , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas de Fusão Oncogênica/genética , Receptor trkA/genética
12.
Genesis ; 48(12): 723-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20853428

RESUMO

The use of the green fluorescent protein (GFP) to label specific cell types and track gene expression in animal models, such as mice, has evolved to become an essential tool in biological research. Transgenic animals expressing genes of interest linked to GFP, either as a fusion protein or transcribed from an internal ribosomal entry site (IRES) are widely used. Enhanced GFP (eGFP) is the most common form of GFP used for such applications. However, a red fluorescent protein (RFP) would be highly desirable for use in dual-labeling applications with GFP derived fluorescent proteins, and for deep in vivo imaging of tissues. Recently, a new generation of monomeric (m)RFPs, such as monomeric (m)Cherry, has been developed that are potentially useful experimentally. mCherry exhibits brighter fluorescence, matures more rapidly, has a higher tolerance for N-terminal fusion proteins, and is more photostable compared with its predecessor mRFP1. mRFP1 itself was the first true monomer derived from its ancestor DsRed, an obligate tetramer in vivo. Here, we report the successful generation of a transgenic mouse line expressing mCherry as a fluorescent marker, driven by the ubiquitin-C promoter. mCherry is expressed in almost all tissues analyzed including pre- and post-implantation stage embryos, and white blood cells. No expression was detected in erythrocytes and thrombocytes. Importantly, we did not encounter any changes in normal development, general physiology, or reproduction. mCherry is spectrally and genetically distinct from eGFP and, therefore, serves as an excellent red fluorescent marker alone or in combination with eGFP for labelling transgenic animals.


Assuntos
Regulação da Expressão Gênica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Animais , Perfilação da Expressão Gênica , Vetores Genéticos , Genótipo , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteína Vermelha Fluorescente
13.
Oncologist ; 15(6): 627-35, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20479280

RESUMO

Detection of micrometastatic tumor cells in the bone marrow or peripheral blood of patients with Ewing family of tumors (EFTs) and osteosarcoma has been shown to correlate with poor outcome. Although one of the aims of chemotherapy is eradication of micrometastatic disease, these cells vary phenotypically from primary tumor cells and appear to be more resistant to chemotherapy. As a barrier to metastasis, cells normally undergo a form of cell death termed anoikis after they lose contact with the extracellular matrix or neighboring cells. Tumor cells that acquire malignant potential have developed mechanisms to resist anoikis and thereby survive after detachment from their primary site and while traveling through the circulation. Investigating mechanisms of resistance to anoikis, therefore, provides a valuable model to investigate regulation of micrometastatic disease. This review focuses on the current understanding of the mechanisms involved in mediating cell survival and resistance to anoikis in EFTs and osteosarcoma and discusses future studies that may help to identify novel therapeutics targeted at micrometastatic disease.


Assuntos
Anoikis/fisiologia , Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Sarcoma de Ewing/patologia , Humanos , Metástase Neoplásica , Osteossarcoma/secundário , Sarcoma de Ewing/secundário
14.
Am J Pathol ; 174(2): 550-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19147825

RESUMO

Rhabdomyosarcoma (RMS) in children occurs as two major histological subtypes, embryonal (ERMS) and alveolar (ARMS). ERMS is associated with an 11p15.5 loss of heterozygosity (LOH) and may be confused with nonmyogenic, non-RMS soft tissue sarcomas. ARMS expresses the product of a genomic translocation that fuses FOXO1 (FKHR) with either PAX3 or PAX7 (P-F); however, at least 25% of cases lack these translocations. Here, we describe a genomic-based classification scheme that is derived from the combined gene expression profiling and LOH analysis of 160 cases of RMS and non-RMS soft tissue sarcomas that is at variance with conventional histopathological schemes. We found that gene expression profiles and patterns of LOH of ARMS cases lacking P-F translocations are indistinguishable from conventional ERMS cases. A subset of tumors that has been histologically classified as RMS lack myogenic gene expression. However, classification based on gene expression is possible using as few as five genes with an estimated error rate of less than 5%. Using immunohistochemistry, we characterized two markers, HMGA2 and TFAP2ss, which facilitate the differential diagnoses of ERMS and P-F RMS, respectively, using clinical material. These objectively derived molecular classes are based solely on genomic analysis at the time of diagnosis and are highly reproducible. Adoption of these molecular criteria may offer a more clinically relevant diagnostic scheme, thus potentially improving patient management and therapeutic RMS outcomes.


Assuntos
Biomarcadores Tumorais/análise , Perfilação da Expressão Gênica , Rabdomiossarcoma/classificação , Rabdomiossarcoma/diagnóstico , Rabdomiossarcoma/genética , Adolescente , Criança , Pré-Escolar , Diagnóstico Diferencial , Feminino , Genótipo , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Imuno-Histoquímica , Lactente , Estimativa de Kaplan-Meier , Perda de Heterozigosidade , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sarcoma/patologia , Sensibilidade e Especificidade , Análise Serial de Tecidos , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
15.
Semin Oncol ; 36(4): 324-37, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19664493

RESUMO

In the days before the term "high-grade undifferentiated pleomorphic sarcoma" came into use, one of the most common sarcoma diagnoses was "malignant fibrous histiocytoma," and before that, in an era before immunohistochemistry, "fibrosarcoma" was used to describe most sarcomas. "Spindle cell" is a descriptive phrase that denotes the cellular shape of many of the sarcomas encountered in the adult population. As a result, they are usually treated differently from small round cell sarcomas, and have different biological characteristics than those tumors and sarcomas with epithelioid morphology. As a very broad generalization, sarcomas with a spindle cell microscopic morphology occur in adults and are treated primarily with surgery and often adjuvant or neoadjuvant radiation as primary therapy. In comparison to small round cell sarcomas such as Ewing sarcoma, the use of adjuvant chemotherapy remains controversial, and the sensitivity of these tumors to chemotherapy in the metastatic setting is highly variable. In this article, we describe some of the clinical and biological characteristics of this group of sarcomas.


Assuntos
Sarcoma/patologia , Quimioterapia Adjuvante , Fibrossarcoma/genética , Fibrossarcoma/patologia , Fusão Gênica , Resposta ao Choque Térmico , Humanos , Hipertermia Induzida , Inibidores de Proteínas Quinases/uso terapêutico , Sarcoma/genética , Sarcoma/imunologia , Sarcoma/terapia , Sarcoma Sinovial/genética , Sarcoma Sinovial/patologia , Translocação Genética
16.
Semin Oncol ; 36(4): 338-46, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19664494

RESUMO

Small round cell sarcomas are the most aggressive of the tumors morphologically and clinically encountered in children and adults, and in some ways the most leukemia- or lymphoma-like of sarcomas. Small round cell sarcomas often are associated with chromosomal translocations, like hematologic malignancies, and are usually more sensitive to chemotherapy than other sarcoma subtypes. They have a high risk of mortality, but chemotherapy (in addition to surgery and often radiation therapy) provides a good cure rate, although treatment is often long and intensive. The biology of these tumors is very telling in terms of some of the mechanisms of cancer cell survival and proliferation. Although there is some overlap of the discussion below with the section on translocation associated sarcomas, we have highlighted some of the key issues with these sarcomas below, with some ideas that may bear fruit both in terms of the management of these, other sarcomas, and other cancers alike.


Assuntos
Sarcoma/patologia , Fusão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/fisiologia , Humanos , Proteínas de Fusão Oncogênica/genética , Proteína Proto-Oncogênica c-fli-1 , Proteína EWS de Ligação a RNA , Receptor IGF Tipo 1/antagonistas & inibidores , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Sarcoma Sinovial/genética , Sarcoma Sinovial/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteínas de Peixe-Zebra
17.
Mol Cell Biol ; 26(5): 1754-69, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16478996

RESUMO

Signaling through the insulin-like growth factor I receptor (IGF-IR) axis is essential for transformation by many dominantly acting oncoproteins. However, the mechanism by which IGF-IR contributes to oncogenesis remains unknown. To examine this, we compared transformation properties of the oncogenic ETV6-NTRK3 (EN) chimeric tyrosine kinase in IGF-IR-null R- mouse embryo fibroblasts with R- cells engineered to reexpress IGF-IR (R+ cells). We previously showed that R- cells expressing EN (R- EN cells) are resistant to transformation but that transformation is restored in R+ cells. We now show that while R- EN cells have intact Ras-extracellular signal-regulated kinase signaling and cell cycle progression, they are defective in phosphatidylinositol-3-kinase (PI3K)-Akt activation and undergo detachment-induced apoptosis (anoikis) under anchorage-independent conditions. In contrast, R+ cells expressing EN (R+ EN cells) suppress anoikis and are fully transformed. The requirement for IGF-IR in R- EN cells is overcome by ectopic expression of either activated Akt or a membrane-targeted form of EN. Moreover, compared to R- EN cells, R+ EN cells show a dramatic increase in membrane localization of insulin receptor substrate 1 (IRS-1) in association with EN. Since EN is known to bind IRS-1 as an adaptor protein, our findings suggest that IGF-IR may function to localize EN/IRS-1 complexes to cell membranes, in turn facilitating PI3K-Akt activation and suppression of anoikis.


Assuntos
Anoikis , Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Animais , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas Substratos do Receptor de Insulina , Masculino , Camundongos , Camundongos Nus , Mutação , Proteínas de Fusão Oncogênica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptor IGF Tipo 1/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ensaio Tumoral de Célula-Tronco
18.
Mol Cell Biol ; 26(1): 277-92, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354698

RESUMO

YB-1 is a broad-specificity RNA-binding protein that is involved in regulation of mRNA transcription, splicing, translation, and stability. In both germinal and somatic cells, YB-1 and related proteins are major components of translationally inactive messenger ribonucleoprotein particles (mRNPs) and are mainly responsible for storage of mRNAs in a silent state. However, mechanisms regulating the repressor activity of YB-1 are not well understood. Here we demonstrate that association of YB-1 with the capped 5' terminus of the mRNA is regulated via phosphorylation by the serine/threonine protein kinase Akt. In contrast to its nonphosphorylated form, phosphorylated YB-1 fails to inhibit cap-dependent but not internal ribosome entry site-dependent translation of a reporter mRNA in vitro. We also show that similar to YB-1, Akt is associated with inactive mRNPs and that activated Akt may relieve translational repression of the YB-1-bound mRNAs. Using Affymetrix microarrays, we found that many of the YB-1-associated messages encode stress- and growth-related proteins, raising the intriguing possibility that Akt-mediated YB-1 phosphorylation could, in part, increase production of proteins regulating cell proliferation, oncogenic transformation, and stress response.


Assuntos
Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Células NIH 3T3 , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Capuzes de RNA/metabolismo , Ribonucleoproteínas/metabolismo
19.
Cancer Res ; 67(7): 3192-200, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17409427

RESUMO

The ETV6-NTRK3 (EN) chimeric tyrosine kinase, a potent oncoprotein expressed in tumors derived from multiple cell lineages, functions as a constitutively active protein-tyrosine kinase. ETV6-NTRK expression leads to the constitutive activation of two major effector pathways of wild-type NTRK3, namely, the Ras-mitogen-activated protein kinase (MAPK) mitogenic pathway and the phosphoinositide-3-kinase (PI3K)-Akt pathway mediating cell survival, and both are required for EN transformation. However, it remains unclear how ETV6-NTRK3 activates Ras-Erk1/2 and/or PI3K-Akt cascades. Here, we define some aspects of the molecular mechanisms regulating ETV6-NTRK-dependent Ras-Erk1/2 and PI3K-Akt activation. We show that ETV6-NTRK3 associates with c-Src, and that treatment with SU6656, a c-Src inhibitor, completely blocks ETV6-NTRK-transforming activity. Treatment of NIH3T3 cells expressing ETV6-NTRK3 with SU6656 attenuated the activation of Ras-Erk1/2 and PI3K-Akt. Suppression of c-Src by RNA interference in NIH3T3-ETV6-NTRK3 cells resulted in markedly decreased expression of cyclin D1 and suppression of activation of Ras-Erk1/2 and PI3K-Akt. However, in Src-deficient cells, the ETV6-NTRK3 failed to activate the PI3K-Atk pathway, but not the Ras-Erk1/2 pathway. Therefore, these data indicate that ETV6-NTRK3 induces the PI3K-Akt cascade through the activation of c-Src.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Ativação Enzimática , Humanos , Indóis/farmacologia , Camundongos , Células NIH 3T3 , Proteínas de Fusão Oncogênica/genética , Proteínas Tirosina Quinases/biossíntese , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , RNA Interferente Pequeno/genética , Sulfonamidas/farmacologia , Quinases da Família src
20.
Cancer Res ; 67(7): 3094-105, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17409416

RESUMO

Ability to grow under anchorage-independent conditions is one of the major hallmarks of transformed cells. Key to this is the capacity of cells to suppress anoikis, or programmed cell death induced by detachment from the extracellular matrix. To model this phenomenon in vitro, we plated Ewing tumor cells under anchorage-independent conditions by transferring them to dishes coated with agar to prevent attachment to underlying plastic. This resulted in marked up-regulation of E-cadherin and rapid formation of multicellular spheroids in suspension. Addition of calcium chelators, antibodies to E-cadherin (but not to other cadherins or beta(1)-integrin), or expression of dominant negative E-cadherin led to massive apoptosis of spheroid cultures whereas adherent cultures were unaffected. This correlated with reduced activation of the phosphatidylinositol 3-kinase-Akt pathway but not the Ras-extracellular signal-regulated kinase 1/2 cascade. Furthermore, spheroid cultures showed profound chemoresistance to multiple cytotoxic agents compared with adherent cultures, which could be reversed by alpha-E-cadherin antibodies or dominant negative E-cadherin. In a screen for potential downstream effectors of spheroid cell survival, we detected E-cadherin-dependent activation of the ErbB4 receptor tyrosine kinase but not of other ErbB family members. Reduction of ErbB4 levels by RNA interference blocked Akt activation and spheroid cell survival and restored chemosensitivity to Ewing sarcoma spheroids. Our results indicate that anchorage-independent Ewing sarcoma cells suppress anoikis through a pathway involving E-cadherin cell-cell adhesion, which leads to ErbB4 activation of the phosphatidylinositol 3-kinase-Akt pathway, and that this is associated with increased resistance of cells to cytotoxic agents.


Assuntos
Anoikis/fisiologia , Neoplasias Ósseas/patologia , Caderinas/metabolismo , Receptores ErbB/metabolismo , Sarcoma de Ewing/patologia , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Caderinas/biossíntese , Caderinas/genética , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Ativação Enzimática , Receptores ErbB/biossíntese , Receptores ErbB/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-4 , Sarcoma de Ewing/enzimologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Transdução de Sinais , Esferoides Celulares , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA