Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Neurosci ; 43(18): 3379-3390, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37001992

RESUMO

Early and progressive cortico-striatal circuit alterations have been widely characterized in Huntington's disease (HD) patients. Cortical premotor area, M2 cortex in rodents, is the most affected cortical input to the striatum from early stages in patients and is associated to the motor learning deficits present in HD mice. Yet, M2 cortex sends additional long-range axon collaterals to diverse output brain regions beyond basal ganglia. Here, we aimed to elucidate the contribution of M2 cortex projections to HD pathophysiology in mice. Using fMRI, M2 cortex showed most prominent functional connectivity alterations with the superior colliculus (SC) in symptomatic R6/1 HD male mice. Structural alterations were also detected by tractography, although diffusion weighted imaging measurements suggested preserved SC structure and similar electrophysiological responses were obtained in the SC on optogenetic stimulation of M2 cortical axons. Male and female HD mice showed behavioral alterations linked to SC function, including decreased defensive behavioral responses toward unexpected stimuli, such as a moving robo-beetle, and decreased locomotion on an unexpected flash of light. Additionally, GCamp6f fluorescence recordings with fiber photometry showed that M2 cortex activity was engaged by the presence of a randomly moving robo-bettle, an effect absent in HD male mice. Moreover, acute chemogenetic M2 cortex inhibition in WT mice shift behavioral responses toward an HD phenotype. Collectively, our findings highlight the involvement of M2 cortex activity in visual stimuli-induced behavioral responses, which are deeply altered in the R6/1 HD mouse model.SIGNIFICANCE STATEMENT Understanding brain circuit alterations in brain disorders is critical for developing circuit-based therapeutic interventions. The cortico-striatal circuit is the most prominently disturbed in Huntington's disease (HD); and particularly, M2 cortex has a prominent role. However, the same M2 cortical neurons send additional projections to several brain regions beyond striatum. We characterized new structural and functional circuitry alterations of M2 cortex in HD mouse models and found that M2 cortex projection to the superior colliculus (SC) was deeply impaired. Moreover, we describe differential responses to unexpected sensory stimulus in HD mouse models, which relies on SC function. Our data highlight the involvement of M2 cortex in SC-dependent sensory processing and its alterations in HD pathophysiology.


Assuntos
Doença de Huntington , Camundongos , Masculino , Feminino , Animais , Colículos Superiores , Neurônios/fisiologia , Corpo Estriado , Axônios , Modelos Animais de Doenças , Camundongos Transgênicos
2.
J Neurochem ; 140(3): 509-521, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27874975

RESUMO

Hypertension is a main risk factor for the development of cerebral small vessel disease (cSVD) - a major contributor to stroke and the most common cause of vascular dementia. Despite the increasing socioeconomic importance arising from cSVD, currently only a few specific treatment strategies with proven efficacy are known. Fundamental to the lack of specific treatments is poor understanding of the disease pathogenesis and a lack of appropriate animal models resembling all symptoms of the human disease. However, chronic hypertensive rat models have been shown to bear similarities to most key features of cSVD. Despite a significantly larger toolbox available for genotypic and phenotypic modifications compared to rats, mouse models of hypertension are unusual when modeling cSVD and associated cognitive impairment experimentally. In the present study, we therefore characterized hypertension-mediated cerebrovascular alterations and accompanying structural and functional consequences by simultaneously treating adult wild-type mice (C57BL/6N) with Angiotensin II (AngII) and the nitric oxide synthases inhibitor L-NAME for 4 weeks. Hypertension associated to cerebral alterations reminiscent of early-onset cSVD and vascular cognitive impairment when combined with additional AngII bolus injections. Most importantly, preventing the elevation of blood pressure (BP) protected from the development of cSVD symptoms and associated cognitive decline. Our data strongly support the suitability of this particular mouse model of AngII-induced hypertension as an appropriate animal model for early-onset cSVD and hence, vascular cognitive impairment, pathologies commonly preceding vascular dementia.


Assuntos
Angiotensina II/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/patologia , Animais , Encéfalo/metabolismo , Feminino , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
3.
Int J Neuropsychopharmacol ; 17(8): 1269-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24650558

RESUMO

5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural hallucinogen component of Ayahuasca, an Amazonian beverage traditionally used for ritual, religious and healing purposes that is being increasingly used for recreational purposes in US and Europe. 5MeO-DMT is of potential interest for schizophrenia research owing to its hallucinogenic properties. Two other psychotomimetic agents, phencyclidine and 2,5-dimethoxy-4-iodo-phenylisopropylamine (DOI), markedly disrupt neuronal activity and reduce the power of low frequency cortical oscillations (<4 Hz, LFCO) in rodent medial prefrontal cortex (mPFC). Here we examined the effect of 5-MeO-DMT on cortical function and its potential reversal by antipsychotic drugs. Moreover, regional brain activity was assessed by blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI). 5-MeO-DMT disrupted mPFC activity, increasing and decreasing the discharge of 51 and 35% of the recorded pyramidal neurons, and reducing (-31%) the power of LFCO. The latter effect depended on 5-HT1A and 5-HT2A receptor activation and was reversed by haloperidol, clozapine, risperidone, and the mGlu2/3 agonist LY379268. Likewise, 5-MeO-DMT decreased BOLD responses in visual cortex (V1) and mPFC. The disruption of cortical activity induced by 5-MeO-DMT resembles that produced by phencyclidine and DOI. This, together with the reversal by antipsychotic drugs, suggests that the observed cortical alterations are related to the psychotomimetic action of 5-MeO-DMT. Overall, the present model may help to understand the neurobiological basis of hallucinations and to identify new targets in antipsychotic drug development.


Assuntos
Antipsicóticos/farmacologia , Banisteriopsis/química , Ondas Encefálicas/efeitos dos fármacos , Alucinógenos/farmacologia , Metoxidimetiltriptaminas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Clozapina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Neuroimagem Funcional , Alucinógenos/antagonistas & inibidores , Haloperidol/farmacologia , Imageamento por Ressonância Magnética , Masculino , Metoxidimetiltriptaminas/antagonistas & inibidores , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Risperidona/farmacologia , Córtex Visual/irrigação sanguínea , Córtex Visual/fisiologia
4.
Gut ; 62(1): 138-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22267600

RESUMO

BACKGROUND AND AIM: The lymphatic network plays a major role in maintaining tissue fluid homoeostasis. Therefore several pathological conditions associated with oedema formation result in deficient lymphatic function. However, the role of the lymphatic system in the pathogenesis of ascites and oedema formation in cirrhosis has not been fully clarified. The aim of this study was to investigate whether the inability of the lymphatic system to drain tissue exudate contributes to the oedema observed in cirrhosis. METHODS: Cirrhosis was induced in rats by CCl(4) inhalation. Lymphatic drainage was evaluated using fluorescent lymphangiography. Expression of endothelial nitric oxide synthase (eNOS) was measured in primary lymphatic endothelial cells (LyECs). Inhibition of eNOS activity in cirrhotic rats with ascites (CH) was carried out by L-N(G)-methyl-L-arginine (L-NMMA) treatment (0.5 mg/kg/day). RESULTS: The (CH) rats had impaired lymphatic drainage in the splanchnic and peripheral regions compared with the control (CT) rats. LyECs isolated from the CH rats showed a significant increase in eNOS and nitric oxide (NO) production. In addition, the lymphatic vessels of the CH rats showed a significant reduction in smooth muscle cell (SMC) coverage compared with the CT rats. CH rats treated with L-NMMA for 7 days showed a significant improvement in lymphatic drainage and a significant reduction in ascites volume, which were associated with increased plasma volume. This beneficial effect of L-NMMA inhibition was also associated with a significant increase in lymphatic SMC coverage. CONCLUSIONS: The upregulation of eNOS in the LyECs of CH rats causes long-term lymphatic remodelling, which is characterised by a loss of SMC lymphatic coverage. The amelioration of this lymphatic abnormality by chronic eNOS inhibition results in improved lymphatic drainage and reduced ascites.


Assuntos
Células Endoteliais/metabolismo , Cirrose Hepática/fisiopatologia , Sistema Linfático/fisiopatologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Ascite/etiologia , Biomarcadores/metabolismo , Tetracloreto de Carbono , Endotélio Linfático/metabolismo , Endotélio Linfático/patologia , Endotélio Linfático/fisiopatologia , Cirrose Hepática/induzido quimicamente , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Linfografia , Masculino , Miócitos de Músculo Liso/patologia , Óxido Nítrico Sintase/antagonistas & inibidores , Distribuição Aleatória , Ratos , Ratos Wistar , ômega-N-Metilarginina/metabolismo
5.
Stroke ; 44(4): 1162-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23463753

RESUMO

BACKGROUND AND PURPOSE: The role of diffusion tensor imaging in determining stroke age remains unclear. We tested the ability of diffusion tensor imaging metrics to discriminate ischemic stroke <4.5 hours of onset. METHODS: We enrolled 60 consecutive patients for multimodal 1.5 T MRI within 12 hours of middle cerebral artery ischemic stroke onset. We measured fractional anisotropy (FA), mean diffusivity (MD), apparent diffusion coefficient (ADC), and T2-weighted signal intensity in affected ipsilateral and unaffected contralateral deep gray matter, cortical gray matter, deep white matter in the corticospinal tract (CST), and subcortical white matter and calculated ipsilateral-to-contralateral ratios (r). Hyperintensity in infarcted tissue was considered fluid-attenuated inversion recovery-positive. RESULTS: We analyzed the 48 patients (17 women; mean age, 68 ± 14 years) with known onset. In 25 (52.1%) patients, onset was ≤ 4.5 hours (mean, 182.3 ± 65.6 minutes). Variables differing significantly between infarcts <4.5 hours and >4.5 hours were rFA CST (P = 0.001), rMD cortical gray matter (P = 0.036), rADC cortical gray matter (P = 0.009), rT2 CST (P = 0.006), and fluid-attenuated inversion recovery (P<0.001). rFA at CST was the most reliable to discriminate infarcts <4.5 hours (Goodman-Kruskal = 0.76). The sensitivity, specificity, and positive and negative predictive values for infarct <4.5 hours of onset by rFA at CST >0.970 were 93.8%, 84.6%, 88.2%, and 91.7%, respectively. CONCLUSIONS: These preliminary results suggest rFA at CST may be a surrogate marker of acute stroke age.


Assuntos
Anisotropia , Infarto da Artéria Cerebral Média/prevenção & controle , Infarto da Artéria Cerebral Média/terapia , Tratos Piramidais/patologia , Adulto , Idoso , Encéfalo/patologia , Isquemia Encefálica/patologia , Mapeamento Encefálico/métodos , Difusão , Feminino , Humanos , Infarto da Artéria Cerebral Média/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
6.
Fluids Barriers CNS ; 20(1): 79, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924081

RESUMO

BACKGROUND: The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS: Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS: Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS: These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Simportadores , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Imunoglobulina G , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Simportadores/genética , Simportadores/metabolismo , Simportadores/uso terapêutico , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/uso terapêutico
7.
Neuropsychopharmacology ; 48(2): 341-350, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088492

RESUMO

Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence. Indeed, the peripherally-restricted CB1R specific antagonist AM6545 showed significant mnemonic effects that were occluded in adrenalectomized mice, and after peripheral adrenergic blockade. AM6545 also transiently impaired contextual fear memory extinction. Vagus nerve chemogenetic inhibition reduced AM6545-induced mnemonic effect. Genetic CB1R deletion in dopamine ß-hydroxylase-expressing cells enhanced recognition memory persistence. These observations support a role of peripheral CB1R modulating adrenergic tone relevant for cognition. Furthermore, AM6545 acutely improved brain connectivity and enhanced extracellular hippocampal norepinephrine. In agreement, intra-hippocampal ß-adrenergic blockade prevented AM6545 mnemonic effects. Altogether, we disclose a novel CB1R-dependent peripheral mechanism with implications relevant for lengthening the duration of non-emotional memory.


Assuntos
Norepinefrina , Receptor CB1 de Canabinoide , Animais , Camundongos , Adrenérgicos/farmacologia , Encéfalo , Hipocampo , Norepinefrina/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores
8.
Cell Microbiol ; 13(1): 109-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20923452

RESUMO

Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria.


Assuntos
Eritrócitos/parasitologia , Macrófagos/parasitologia , Malária/patologia , Plasmodium yoelii/patogenicidade , Doenças dos Roedores/patologia , Baço/patologia , Baço/parasitologia , Animais , Feminino , Evasão da Resposta Imune , Malária/imunologia , Malária/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmodium yoelii/imunologia , Doenças dos Roedores/imunologia , Doenças dos Roedores/parasitologia , Baço/imunologia
10.
Sci Rep ; 12(1): 16958, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216838

RESUMO

Brain damage associated with Alzheimer's disease (AD) occurs even decades before the symptomatic onset, raising the need to investigate its progression from prodromal stages. In this context, animal models that progressively display AD pathological hallmarks (e.g. TgF344-AD) become crucial. Translational technologies, such as magnetic resonance spectroscopy (MRS), enable the longitudinal metabolic characterization of this disease. However, an integrative approach is required to unravel the complex metabolic changes underlying AD progression, from early to advanced stages. TgF344-AD and wild-type (WT) rats were studied in vivo on a 7 Tesla MRI scanner, for longitudinal quantitative assessment of brain metabolic profile changes using MRS. Disease progression was investigated at 4 time points, from 9 to 18 months of age, and in 4 regions: cortex, hippocampus, striatum, and thalamus. Compared to WT, TgF344-AD rats replicated common findings in AD patients, including decreased N-acetylaspartate in the cortex, hippocampus and thalamus, and decreased glutamate in the thalamus and striatum. Different longitudinal evolution of metabolic concentration was observed between TgF344-AD and WT groups. Namely, age-dependent trajectories differed between groups for creatine in the cortex and thalamus and for taurine in cortex, with significant decreases in Tg344-AD animals; whereas myo-inositol in the thalamus and striatum showed greater increase along time in the WT group. Additional analysis revealed divergent intra- and inter-regional metabolic coupling in each group. Thus, in cortex, strong couplings of N-acetylaspartate and creatine with myo-inositol in WT, but with taurine in TgF344-AD rats were observed; whereas in the hippocampus, myo-inositol, taurine and choline compounds levels were highly correlated in WT but not in TgF344-AD animals. Furthermore, specific cortex-hippocampus-striatum metabolic crosstalks were found for taurine levels in the WT group but for myo-inositol levels in the TgF344-AD rats. With a systems biology perspective of metabolic changes in AD pathology, our results shed light into the complex spatio-temporal metabolic rewiring in this disease, reported here for the first time. Age- and tissue-dependent imbalances between myo-inositol, taurine and other metabolites, such as creatine, unveil their role in disease progression, while pointing to the inadequacy of the latter as an internal reference for quantification.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ácido Glutâmico/metabolismo , Inositol , Ratos , Taurina
11.
Front Cell Neurosci ; 16: 856855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548372

RESUMO

Brain electrical stimulation techniques take advantage of the intrinsic plasticity of the nervous system, opening a wide range of therapeutic applications. Vagus nerve stimulation (VNS) is an approved adjuvant for drug-resistant epilepsy and depression. Its non-invasive form, auricular transcutaneous VNS (atVNS), is under investigation for applications, including cognitive improvement. We aimed to study the effects of atVNS on brain connectivity, under conditions that improved memory persistence in CD-1 male mice. Acute atVNS in the cymba conchae of the left ear was performed using a standard stimulation protocol under light isoflurane anesthesia, immediately or 3 h after the training/familiarization phase of the novel object-recognition memory test (NORT). Another cohort of mice was used for bilateral c-Fos analysis after atVNS administration. Spearman correlation of c-Fos density between each pair of the thirty brain regions analyzed allowed obtaining the network of significant functional connections in stimulated and non-stimulated control brains. NORT performance was enhanced when atVNS was delivered just after, but not 3 h after, the familiarization phase of the task. No alterations in c-Fos density were associated with electrostimulation, but a significant effect of atVNS was observed on c-Fos-based functional connectivity. atVNS induced a clear reorganization of the network, increasing the inter-hemisphere connections and the connectivity of locus coeruleus. Our results provide new insights into the effects of atVNS on memory performance and brain connectivity extending our knowledge of the biological mechanisms of bioelectronics in medicine.

12.
Alzheimers Res Ther ; 14(1): 161, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324176

RESUMO

OBJECTIVE: The purpose of this study was to examine the levels of cerebrospinal fluid (CSF) apolipoprotein E (apoE) species in Alzheimer's disease (AD) patients. METHODS: We analyzed two CSF cohorts of AD and control individuals expressing different APOE genotypes. Moreover, CSF samples from the TgF344-AD rat model were included. Samples were run in native- and SDS-PAGE under reducing or non-reducing conditions (with or without ß-mercaptoethanol). Immunoprecipitation combined with mass spectrometry or western blotting analyses served to assess the identity of apoE complexes. RESULTS: In TgF344-AD rats expressing a unique apoE variant resembling human apoE4, a ~35-kDa apoE monomer was identified, increasing at 16.5 months compared with wild-types. In humans, apoE isoforms form disulfide-linked dimers in CSF, except apoE4, which lacks a cysteine residue. Thus, controls showed a decrease in the apoE dimer/monomer quotient in the APOE ε3/ε4 group compared with ε3/ε3 by native electrophoresis. A major contribution of dimers was found in APOE ε3/ε4 AD cases, and, unexpectedly, dimers were also found in ε4/ε4 AD cases. Under reducing conditions, two apoE monomeric glycoforms at 36 kDa and at 34 kDa were found in all human samples. In AD patients, the amount of the 34-kDa species increased, while the 36-kDa/34-kDa quotient was lower compared with controls. Interestingly, under reducing conditions, a ~100-kDa apoE complex, the identity of which was confirmed by mass spectrometry, also appeared in human AD individuals across all APOE genotypes, suggesting the occurrence of aberrantly resistant apoE aggregates. A second independent cohort of CSF samples validated these results. CONCLUSION: These results indicate that despite the increase in total apoE content the apoE protein is altered in AD CSF, suggesting that function may be compromised.


Assuntos
Doença de Alzheimer , Humanos , Animais , Ratos , Doença de Alzheimer/líquido cefalorraquidiano , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Genótipo
13.
Ann N Y Acad Sci ; 1518(1): 282-298, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36256544

RESUMO

The consequences of extremely intense long-term exercise for brain health remain unknown. We studied the effects of strenuous exercise on brain structure and function, its dose-response relationship, and mechanisms in a rat model of endurance training. Five-week-old male Wistar rats were assigned to moderate (MOD) or intense (INT) exercise or a sedentary (SED) group for 16 weeks. MOD rats showed the highest motivation and learning capacity in operant conditioning experiments; SED and INT presented similar results. In vivo MRI demonstrated enhanced global and regional connectivity efficiency and clustering as well as a higher cerebral blood flow (CBF) in MOD but not INT rats compared with SED. In the cortex, downregulation of oxidative phosphorylation complex IV and AMPK activation denoted mitochondrial dysfunction in INT rats. An imbalance in cortical antioxidant capacity was found between MOD and INT rats. The MOD group showed the lowest hippocampal brain-derived neurotrophic factor levels. The mRNA and protein levels of inflammatory markers were similar in all groups. In conclusion, strenuous long-term exercise yields a lesser improvement in learning ability than moderate exercise. Blunting of MOD-induced improvements in CBF and connectivity efficiency, accompanied by impaired mitochondrial energetics and, possibly, transient local oxidative stress, may underlie the findings in intensively trained rats.


Assuntos
Condicionamento Físico Animal , Ratos , Animais , Masculino , Ratos Wistar , Condicionamento Físico Animal/fisiologia , Estresse Oxidativo , Antioxidantes , Encéfalo
14.
Nat Metab ; 4(4): 424-434, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379970

RESUMO

Preparation for motherhood requires a myriad of physiological and behavioural adjustments throughout gestation to provide an adequate environment for proper embryonic development1. Cravings for highly palatable foods are highly prevalent during pregnancy2 and contribute to the maintenance and development of gestational overweight or obesity3. However, the neurobiology underlying the distinct ingestive behaviours that result from craving specific foods remain unknown. Here we show that mice, similarly to humans, experience gestational food craving-like episodes. These episodes are associated with a brain connectivity reorganization that affects key components of the dopaminergic mesolimbic circuitry, which drives motivated appetitive behaviours and facilitates the perception of rewarding stimuli. Pregnancy engages a dynamic modulation of dopaminergic signalling through neurons expressing dopamine D2 receptors in the nucleus accumbens, which directly modulate food craving-like events. Importantly, persistent maternal food craving-like behaviour has long-lasting effects on the offspring, particularly in males, leading to glucose intolerance, increased body weight and increased susceptibility to develop eating disorders and anxiety-like behaviours during adulthood. Our results reveal the cognitively motivated nature of pregnancy food cravings and advocates for moderating emotional eating during gestation to prevent deterioration of the offspring's neuropsychological and metabolic health.


Assuntos
Fissura , Ingestão de Alimentos , Animais , Fissura/fisiologia , Dopamina/metabolismo , Feminino , Preferências Alimentares/psicologia , Masculino , Camundongos , Obesidade/metabolismo , Gravidez , Aumento de Peso
15.
Redox Biol ; 54: 102353, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777200

RESUMO

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Animais , Homeostase , Gordura Intra-Abdominal/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteômica
16.
Eur J Neurosci ; 33(8): 1551-60, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21410791

RESUMO

The neuropathological hallmark of Parkinson's disease is the loss of dopaminergic neurons in the pars compacta of the substantia nigra (SNc). The degenerative process starts unilaterally and spreads to the dopaminergic system of both hemispheres. However, the complete characterization of the nigra lesion and the subsequent changes in basal ganglia nuclei activity has not yet been achieved in vivo. The aim of this study was to characterize the time course of the nigral lesion in vivo, using longitudinal T2 relaxometry and diffusion tensor imaging, and the changes in basal ganglia nuclei activity, using manganese-enhanced magnetic resonance imaging, in 6-hydroxydopamine (6-OHDA)-lesioned rats. Our results showed that a unilateral SNc lesion induces bilateral alterations, as indicated by the enhancement of magnetic resonance imaging T2 relaxation times in both the ipsilateral and contralateral SNc. Moreover, axial and radial diffusivities demonstrated bilateral changes at 3 and 14 days after 6-OHDA injection in the pars reticulata of the substantia nigra and cortex, respectively, in comparison to the sham group, suggesting bilateral microstructural alterations in these regions. Unexpectedly, manganese-enhanced magnetic resonance imaging showed decreased axonal transport from the ipsilateral subthalamic nucleus to the ventral pallidum in 6-OHDA-lesioned animals compared with the sham group. These findings demonstrate, for the first time in vivo, the temporal pattern of bilateral alteration induced by the 6-OHDA model of Parkinson's disease, and indicate decreased axonal transport in the ipsilateral hemisphere.


Assuntos
Cloretos/metabolismo , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/metabolismo , Oxidopamina/efeitos adversos , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Comportamento Animal/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
17.
J Neural Transm (Vienna) ; 118(6): 877-87, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21318636

RESUMO

Reinstatement of extinguished operant responding for drug is an appropriate model of relapse to drug abuse. Due to the difficulty of implementing in mice the procedure of instrumental intravenous self-administration, mechanisms of reinstatement have so far been studied almost exclusively in rats. A mouse model of reinstatement of cocaine seeking has recently been characterized (Soria et al. 2008). The aim of the present study was to assess regional brain activation, as measured by induction of the immediate early genes (IEG) arc and zif268, during priming- or cue-elicited reinstatement of cocaine seeking using this new mouse model and the in situ hybridization technique. We have demonstrated that cue-elicited reinstatement of cocaine seeking was associated with induction of the IEG in the medial prefrontal cortex (prelimbic and infralimbic) and basolateral amygdala. Priming-induced reinstatement produced a more widespread up-regulation of those genes in forebrain regions including medial prefrontal, orbitofrontal and motor cortex, dorsal striatum and basolateral amygdala. These patterns of IEG expression are in agreement with previous results obtained in rats and thus indicate that the new mouse model of reinstatement is functionally equivalent to rat models. That comparability adds to the usefulness of the mouse model as a tool for addressing neurobiological mechanisms of addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Proteínas do Citoesqueleto/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Prosencéfalo/efeitos dos fármacos , Animais , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Proteínas do Citoesqueleto/biossíntese , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Regulação da Expressão Gênica/fisiologia , Genes Precoces/fisiologia , Masculino , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Prosencéfalo/metabolismo , Prosencéfalo/fisiopatologia
18.
Brain Struct Funct ; 226(8): 2603-2616, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34363521

RESUMO

Ketamine has rapid and robust antidepressant effects. However, unwanted psychotomimetic effects limit its widespread use. Hence, several studies examined whether GluN2B-subunit selective NMDA antagonists would exhibit a better therapeutic profile. Although preclinical work has revealed some of the mechanisms of action of ketamine at cellular and molecular levels, the impact on brain circuitry is poorly understood. Several neuroimaging studies have examined the functional changes in the brain induced by acute administration of ketamine and Ro 25-6981 (a GluN2B-subunit selective antagonist), but the changes in the microstructure of gray and white matter have received less attention. Here, the effects of ketamine and Ro 25-6981 on gray and white matter integrity in male Sprague-Dawley rats were determined using diffusion-weighted magnetic resonance imaging (DWI). In addition, DWI-based structural brain networks were estimated and connectivity metrics were computed at the regional level. Immunohistochemical analyses were also performed to determine whether changes in myelin basic protein (MBP) and neurofilament heavy-chain protein (NF200) may underlie connectivity changes. In general, ketamine and Ro 25-6981 showed some opposite structural alterations, but both compounds coincided only in increasing the fractional anisotropy in infralimbic prefrontal cortex and dorsal raphe nucleus. These changes were associated with increments of NF200 in deep layers of the infralimbic cortex (together with increased MBP) and the dorsal raphe nucleus. Our results suggest that the synthesis of NF200 and MBP may contribute to the formation of new dendritic spines and myelination, respectively. We also suggest that the increase of fractional anisotropy of the infralimbic and dorsal raphe nucleus areas could represent a biomarker of a rapid antidepressant response.


Assuntos
Antidepressivos , Ketamina , Fenóis , Piperidinas , Animais , Antidepressivos/farmacologia , Núcleo Dorsal da Rafe , Ketamina/farmacologia , Imageamento por Ressonância Magnética , Masculino , Fenóis/metabolismo , Piperidinas/metabolismo , Córtex Pré-Frontal , Ratos , Ratos Sprague-Dawley
19.
Commun Biol ; 4(1): 1192, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654883

RESUMO

DHX15 is a downstream substrate for Akt1, which is involved in key cellular processes affecting vascular biology. Here, we explored the vascular regulatory function of DHX15. Homozygous DHX15 gene deficiency was lethal in mouse and zebrafish embryos. DHX15-/- zebrafish also showed downregulation of VEGF-C and reduced formation of lymphatic structures during development. DHX15+/- mice depicted lower vascular density and impaired lymphatic function postnatally. RNAseq and proteome analysis of DHX15 silenced endothelial cells revealed differential expression of genes involved in the metabolism of ATP biosynthesis. The validation of these results demonstrated a lower activity of the Complex I in the mitochondrial membrane of endothelial cells, resulting in lower intracellular ATP production and lower oxygen consumption. After injection of syngeneic LLC1 tumor cells, DHX15+/- mice showed partially inhibited primary tumor growth and reduced lung metastasis. Our results revealed an important role of DHX15 in vascular physiology and pave a new way to explore its potential use as a therapeutical target for metastasis treatment.


Assuntos
Metabolismo Energético , Sistema Linfático/patologia , Metástase Neoplásica , RNA Helicases/deficiência , Animais , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endotélio/metabolismo , Camundongos , Camundongos Transgênicos/embriologia , Neoplasias , Peixe-Zebra/embriologia
20.
Biophys J ; 99(2): 480-8, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20643066

RESUMO

Bicelles are discoidal phospholipid nanostructures at high lipid concentrations. Under dilute conditions, bicelles become larger and adopt a variety of morphologies. This work proposes a strategy to preserve the discoidal morphology of bicelles in environments with high water content. Bicelles were formed in concentrated conditions and subsequently encapsulated in liposomes. Later dilution of these new structures, called bicosomes, demonstrated that lipid vesicles were able to isolate and protect bicelles entrapped inside them from the medium. Characterization of systems before and after dilution by dynamic light-scattering spectroscopy and cryo-transmission electron microscopy showed that free bicelles changed in size and morphology, whereas encapsulated bicelles remained unaltered by the effect of dilution. Free and entrapped bicelles (containing the paramagnetic contrast agent gadodiamide) were injected into rat brain lateral ventricles. Coronal and sagittal visualization was performed by magnetic resonance imaging. Whereas rats injected with free bicelles did not survive the surgery, those injected with bicosomes did, and a hyperintensity effect due to gadodiamide was observed in the cerebrospinal fluid. These results indicate that bicosomes are a good means of preserving the morphology of bicelles under dilution conditions.


Assuntos
Lipossomos/química , Micelas , Fosfolipídeos/química , Água/química , Animais , Encéfalo/anatomia & histologia , Encéfalo/efeitos dos fármacos , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/farmacologia , Injeções Intraventriculares , Lipossomos/ultraestrutura , Espectroscopia de Ressonância Magnética , Ratos , Ratos Wistar , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA