Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(2): 908-918, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36583341

RESUMO

Polyribosomes, the groups of ribosomes simultaneously translating a single mRNA molecule, are very common in both, prokaryotic and eukaryotic cells. Even in early EM studies, polyribosomes have been shown to possess various spatial conformations, including a ring-shaped configuration which was considered to be functionally important. However, a recent in situ cryo-ET analysis of predominant regular inter-ribosome contacts did not confirm the abundance of ring-shaped polyribosomes in a cell cytoplasm. To address this discrepancy, here we analyzed the cryo-ET structure of polyribosomes in diluted lysates of HeLa cells. It was shown that the vast majority of the ribosomes were combined into polysomes and were proven to be translationally active. Tomogram analysis revealed that circular polyribosomes are indeed very common in the cytoplasm, but they mostly possess pseudo-regular structures without specific inter-ribosomal contacts. Although the size of polyribosomes varied widely, most circular polysomes were relatively small in size (4-8 ribosomes). Our results confirm the recent data that it is cellular mRNAs with short ORF that most commonly form circular structures providing an enhancement of translation.


Assuntos
Biossíntese de Proteínas , Ribossomos , Humanos , Células HeLa , Polirribossomos/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Conformação Molecular
2.
Biochemistry (Mosc) ; 88(11): 1786-1799, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38105199

RESUMO

In response to stress stimuli, eukaryotic cells typically suppress protein synthesis. This leads to the release of mRNAs from polysomes, their condensation with RNA-binding proteins, and the formation of non-membrane-bound cytoplasmic compartments called stress granules (SGs). SGs contain 40S but generally lack 60S ribosomal subunits. It is known that cycloheximide, emetine, and anisomycin, the ribosome inhibitors that block the progression of 80S ribosomes along mRNA and stabilize polysomes, prevent SG assembly. Conversely, puromycin, which induces premature termination, releases mRNA from polysomes and stimulates the formation of SGs. The same effect is caused by some translation initiation inhibitors, which lead to polysome disassembly and the accumulation of mRNAs in the form of stalled 48S preinitiation complexes. Based on these and other data, it is believed that the trigger for SG formation is the presence of mRNA with extended ribosome-free segments, which tend to form condensates in the cell. In this study, we evaluated the ability of various small-molecule translation inhibitors to block or stimulate the assembly of SGs under conditions of severe oxidative stress induced by sodium arsenite. Contrary to expectations, we found that ribosome-targeting elongation inhibitors of a specific type, which arrest solitary 80S ribosomes at the beginning of the mRNA coding regions but do not interfere with all subsequent ribosomes in completing translation and leaving the transcripts (such as harringtonine, lactimidomycin, or T-2 toxin), completely prevent the formation of arsenite-induced SGs. These observations suggest that the presence of even a single 80S ribosome on mRNA is sufficient to prevent its recruitment into SGs, and the presence of extended ribosome-free regions of mRNA is not sufficient for SG formation. We propose that mRNA entry into SGs may be mediated by specific contacts between RNA-binding proteins and those regions on 40S subunits that remain inaccessible when ribosomes are associated.


Assuntos
Biossíntese de Proteínas , Grânulos de Estresse , RNA Mensageiro/metabolismo , Grânulos Citoplasmáticos , Ribossomos/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Proteínas de Ligação a RNA/metabolismo
3.
Biochemistry (Mosc) ; 86(9): 1060-1094, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34565312

RESUMO

Viruses exploit the translation machinery of an infected cell to synthesize their proteins. Therefore, viral mRNAs have to compete for ribosomes and translation factors with cellular mRNAs. To succeed, eukaryotic viruses adopt multiple strategies. One is to circumvent the need for m7G-cap through alternative instruments for ribosome recruitment. These include internal ribosome entry sites (IRESs), which make translation independent of the free 5' end, or cap-independent translational enhancers (CITEs), which promote initiation at the uncapped 5' end, even if located in 3' untranslated regions (3' UTRs). Even if a virus uses the canonical cap-dependent ribosome recruitment, it can still perturb conventional ribosomal scanning and start codon selection. The pressure for genome compression often gives rise to internal and overlapping open reading frames. Their translation is initiated through specific mechanisms, such as leaky scanning, 43S sliding, shunting, or coupled termination-reinitiation. Deviations from the canonical initiation reduce the dependence of viral mRNAs on translation initiation factors, thereby providing resistance to antiviral mechanisms and cellular stress responses. Moreover, viruses can gain advantage in a competition for the translational machinery by inactivating individual translational factors and/or replacing them with viral counterparts. Certain viruses even create specialized intracellular "translation factories", which spatially isolate the sites of their protein synthesis from cellular antiviral systems, and increase availability of translational components. However, these virus-specific mechanisms may become the Achilles' heel of a viral life cycle. Thus, better understanding of the unconventional mechanisms of viral mRNA translation initiation provides valuable insight for developing new approaches to antiviral therapy.


Assuntos
Células Eucarióticas/virologia , Iniciação Traducional da Cadeia Peptídica/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Animais , Células Eucarióticas/fisiologia , Humanos , Sítios Internos de Entrada Ribossomal/fisiologia , RNA Circular/genética , Proteínas Virais/fisiologia
4.
Front Immunol ; 14: 1098302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865543

RESUMO

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Assuntos
Toxinas Botulínicas Tipo A , COVID-19 , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Anticorpos de Domínio Único/genética , Pandemias , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA