Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(3): 901-916, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37878015

RESUMO

Photosynthesis drives plant physiology, biomass accumulation, and yield. Photosynthetic efficiency, specifically the operating efficiency of PSII (Fq'/Fm'), is highly responsive to actual growth conditions, especially to fluctuating photosynthetic photon fluence rate (PPFR). Under field conditions, plants constantly balance energy uptake to optimize growth. The dynamic regulation complicates the quantification of cumulative photochemical energy uptake based on the intercepted solar energy, its transduction into biomass, and the identification of efficient breeding lines. Here, we show significant effects on biomass related to genetic variation in photosynthetic efficiency of 178 climbing bean (Phaseolus vulgaris L.) lines. Under fluctuating conditions, the Fq'/Fm' was monitored throughout the growing period using hand-held and automated chlorophyll fluorescence phenotyping. The seasonal response of Fq'/Fm' to PPFR (ResponseG:PPFR) achieved significant correlations with biomass and yield, ranging from 0.33 to 0.35 and from 0.22 to 0.31 in two glasshouse and three field trials, respectively. Phenomic yield prediction outperformed genomic predictions for new environments in four trials under different growing conditions. Investigating genetic control over photosynthesis, one single nucleotide polymorphism (Chr09_37766289_13052) on chromosome 9 was significantly associated with ResponseG:PPFR in proximity to a candidate gene controlling chloroplast thylakoid formation. In conclusion, photosynthetic screening facilitates and accelerates selection for high yield potential.


Assuntos
Luz , Folhas de Planta , Folhas de Planta/fisiologia , Melhoramento Vegetal , Fotossíntese/fisiologia , Cloroplastos , Clorofila
2.
Plant Methods ; 20(1): 39, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486284

RESUMO

Climate instability directly affects agro-environments. Water scarcity, high air temperature, and changes in soil biota are some factors caused by environmental changes. Verified and precise phenotypic traits are required for assessing the impact of various stress factors on crop performance while keeping phenotyping costs at a reasonable level. Experiments which use a lysimeter method to measure transpiration efficiency are often expensive and require complex infrastructures. This study presents the development and testing process of an automated, reliable, small, and low-cost prototype system using IoT with high-frequency potential in near-real time. Because of its waterproofness, our device-LysipheN-assesses each plant individually and can be deployed for experiments in different environmental conditions (farm, field, greenhouse, etc.). LysipheN integrates multiple sensors, automatic irrigation according to desired drought scenarios, and a remote, wireless connection to monitor each plant and device performance via a data platform. During testing, LysipheN proved to be sensitive enough to detect and measure plant transpiration, from early to ultimate plant developmental stages. Even though the results were generated on common beans, the LysipheN can be scaled up/adapted to other crops. This tool serves to screen transpiration, transpiration efficiency, and transpiration-related physiological traits. Because of its price, endurance, and waterproof design, LysipheN will be useful in screening populations in a realistic ecological and breeding context. It operates by phenotyping the most suitable parental lines, characterizing genebank accessions, and allowing breeders to make a target-specific selection using functional traits (related to the place where LysipheN units are located) in line with a realistic agronomic background.

3.
Data Brief ; 22: 90-97, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30581910

RESUMO

The datasets and code presented in this article are related to the research article entitled "Comprehensiveness of conservation of useful wild plants: an operational indicator for biodiversity and sustainable development targets"1. The indicator methodology includes five main steps, each requiring and producing data, which are fully described and available here. These data include: species taxonomy, uses, and general geographic information (dataset 1); species occurrence data (dataset 2); global administrative areas data (dataset 3); eco-geographic predictors used in species distribution modeling (dataset 4); a world map raster file (dataset 5); species spatial distribution modeling outputs (dataset 6); ecoregion spatial data used in conservation analyses (dataset 7); protected area spatial data used in conservation analyses (dataset 8); and countries, sub-regions, and regions classifications data (dataset 9). These data are available at http://dx.doi.org/10.17632/2jxj4k32m2.1. In combination with the openly accessible methodology code (https://github.com/CIAT-DAPA/UsefulPlants-Indicator), these data facilitate indicator assessments and serve as a baseline against which future calculations of the indicator can be measured. The data can also contribute to other species distribution modeling, ecological research, and conservation analysis purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA