Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042784

RESUMO

The oxidation of hydrocarbons is an important chemical transformation with relevance to biology and industry. Ni-catalyzed transformations are more scarce compared to Mn or Fe but have gained attention in recent years, affording efficient oxidations. Understanding the mechanism of action of these catalysts, including the detection and characterization of the active nickel-oxygen species, is of interest to design better catalysts. In this work, we undertake a theoretical study to unravel the mechanism of formation of the previously reported [Ni(OCl)(HL)]+ (H2) and how it activates C-H bonds. We disclose that the active species is indeed compound [Ni(O)(HL)]+, formed after homolytic cleavage of the O-Cl bond in H2 assisted by a chlorine radical. [Ni(O)(HL)]+ mediates C-H activation through an asynchronous concerted mechanism, in which the transition state is given by hydrogen atom transfer. Moreover, the electronic tuning of the ligand has a very modest impact on the stability and reactivity of the corresponding X2 species. Effective oxidation state analysis reveals an intriguing electronic structure of H2 and [Ni(O)(HL)]+, in which both the macrocycic HL ligand and the OCl and O ligands behave as redox noninnocent. Such redox activity leads to a fully ambiguous oxidation state assignation.

2.
Angew Chem Int Ed Engl ; 62(46): e202310129, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37772828

RESUMO

Here, we report the development of cobalt(I)-catalyzed regioselective allylic alkylation reactions of tertiary allyl carbonates with 1,3-dicarbonyl compounds. A family of well-defined tetrahedral cobalt(I) complexes bearing commercially available bidentate bis(phosphine) ligands [(P,P)Co(PPh3 )Cl] are synthesized and explored as catalysts in allylic alkylation reactions. The catalyst [(dppp)Co(PPh3 )Cl] (dppp=1,3-Bis(diphenylphosphino)propane) enables the alkylation of a large variety of tertiary allyl carbonates with high yields and excellent regioselectivity for the branched product. Remarkably, this methodology is selective for the activation of tertiary allyl carbonates even in the presence of secondary allyl carbonates. This contrasts with the selectivity observed in cobalt-catalyzed allylic alkylations enabled by visible light photocatalysis. Mechanistic insights by means of experimental and computational investigations support a Co(I)/Co(III) catalytic cycle.

3.
Angew Chem Int Ed Engl ; 61(22): e202201699, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35285116

RESUMO

We disclose a new reactivity mode for electrophilic cyano λ3 -iodanes as group transfer one-electron oxidants to synthesize FeIII and FeIV cyanide complexes. The inherent thermal instability of high-valent FeIV compounds without π-donor ligands (such as oxido (O2- ), imido (RN2- ) or nitrido (N3- )) makes their isolation and structural characterization a very challenging task. We report the synthesis of an FeIV cyanide complex [(N3 N')FeCN] (4) by two consecutive single electron transfer (SET) processes from FeII precursor [(N3 N')FeLi(THF)] (1) with cyanobenziodoxolone (CBX). The FeIV complex can also be prepared by reaction of [(N3 N')FeIII ] (3) with CBX. In contrast, the oxidation of FeII with 1-cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (CDBX) enables the preparation of FeIII cyanide complex [(N3 N')FeIII (CN)(Li)(THF)3 ] (2-LiTHF ). Complexes 4 and 2-LiTHF have been structurally characterized by single crystal X-ray diffraction and their electronic structure has been examined by Mössbauer, EPR spectroscopy, and computational analyses.


Assuntos
Elétrons , Iodo , Cianetos , Compostos Férricos , Compostos Ferrosos/química , Indicadores e Reagentes , Oxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA