Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 246(6): 1097-1107, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28801748

RESUMO

MAIN CONCLUSION: The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.


Assuntos
Alanina Transaminase/metabolismo , Hordeum/enzimologia , Nitrogênio/metabolismo , Sorghum/fisiologia , Triticum/enzimologia , Agrobacterium/fisiologia , Alanina Transaminase/genética , Grão Comestível/enzimologia , Grão Comestível/genética , Grão Comestível/fisiologia , Hordeum/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Sorghum/genética , Transgenes , Triticum/genética , Triticum/fisiologia
2.
Plant Physiol ; 158(2): 917-29, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22158678

RESUMO

Quality Protein Maize (QPM) is a hard-endosperm version of the high-lysine opaque2 (o2) maize (Zea mays) mutant, but the genes involved in modification of the soft o2 endosperm are largely unknown. Pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase (PFP) catalyzes the ATP-independent conversion of fructose-6-phosphate to fructose-1,6-bisphosphate in glycolysis. We found a large increase in transcript and protein levels of the α-regulatory subunit of PFP (PFPα) in QPM endosperm. In vitro enzyme assays showed a significant increase in forward PFP activity in developing endosperm extracts of QPM relative to the wild type and o2. An expressed retrogene version of PFPα of unknown function that was not up-regulated in QPM was also identified. The elevated expression levels of a number of ATP-requiring heat shock proteins (Hsps) in o2 endosperm are ameliorated in QPM. PFPα is also coinduced with Hsps in maize roots in response to heat, cold, and the unfolded protein response stresses. We propose that reduced ATP availability resulting from the generalized Hsp response in addition to the reduction of pyruvate, orthophosphate dikinase activity in o2 endosperm is compensated in part by increased PFP activity in QPM.


Assuntos
Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Fosfotransferases/biossíntese , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , DNA Complementar , Indução Enzimática , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Fosfotransferases/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Locos de Características Quantitativas , Homologia de Sequência de Aminoácidos , Zea mays/genética
3.
Biochem Mol Biol Educ ; 36(1): 61-4, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21591161

RESUMO

To promote understanding of the authority of the primary literature in students taking our biochemistry laboratory courses, a biochemistry laboratory exercise on the determination of an acceptable molar absorptivity value of 2-nitrophenol (2-NP) was developed. This made the laboratory course much more relevant by linking to a thematic thread, ß-galactosidase, that scaffolds concepts in one exercise with those in later exercises. The substrate for the continuous assay of ß-galactosidase is the chromogenic 2-nitrophenyl-ß-D-galactopyranoside that produces 2-NP. In an early laboratory exercise, students determine the wavelength of maximum absorption for the protonated and deprotonated form of 2-NP at various pH values and then determine the molar absorptivity of 2-NP. Students were encouraged to discuss apparent discrepancies not only in their own determinations of molar absorptivity values for 2-NP, but also in the published molar absorptivity values for 2-NP (2,150-21,300 M(-1) cm(-1) ) at almost the same pH and at 420 nm. Finally, the students were led to a publication that serves as an authentic source for molar absorptivity of 2-NP.

4.
Front Plant Sci ; 8: 434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424717

RESUMO

Nitrogen is essential for plant growth and development. Improving the ability of plants to acquire and assimilate nitrogen more efficiently is a key agronomic parameter that will augment sustainability in agriculture. A transcription factor approach was pursued to address improvement of nitrogen use efficiency in two major commodity crops. To this end, the Zea mays Dof1 (ZmDof1) transcription factor was expressed in both wheat (Triticum aestivum) and sorghum (Sorghum bicolor) either constitutively, UBI4 promoter from sugarcane, or in a tissue specific fashion via the maize rbcS1 promoter. The primary transcription activation target of ZmDof1, phosphoenolpyruvate carboxylase (PEPC), is observed in transgenic wheat events. Expression ZmDof1 under control of the rbcs1 promoter translates to increase in biomass and yield components in wheat. However, constitutive expression of ZmDof1 led to the down-regulation of genes involved in photosynthesis and the functional apparatus of chloroplasts, and an outcome that negatively impacts photosynthesis, height, and biomass in wheat. Similar patterns were also observed in sorghum transgenic events harboring the constitutive expression cassette of ZmDof1. These results indicate that transcription factor strategies to boost agronomic phenotypic outcomes in crops need to consider expression patterns of the genetic elements to be introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA