Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
2.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358469

RESUMO

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/genética , Proteogenômica , Acetilação , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Ligação Proteica , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941680

RESUMO

The epithelial-to-mesenchymal transition (EMT) plays a critical role during normal development and in cancer progression. EMT is induced by various signaling pathways, including TGF-ß, BMP, Wnt-ß-catenin, NOTCH, Shh, and receptor tyrosine kinases. In this study, we performed single-cell RNA sequencing on MCF10A cells undergoing EMT by TGF-ß1 stimulation. Our comprehensive analysis revealed that cells progress through EMT at different paces. Using pseudotime clustering reconstruction of gene-expression profiles during EMT, we found sequential and parallel activation of EMT signaling pathways. We also observed various transitional cellular states during EMT. We identified regulatory signaling nodes that drive EMT with the expression of important microRNAs and transcription factors. Using a random circuit perturbation methodology, we demonstrate that the NOTCH signaling pathway acts as a key driver of TGF-ß-induced EMT. Furthermore, we demonstrate that the gene signatures of pseudotime clusters corresponding to the intermediate hybrid EMT state are associated with poor patient outcome. Overall, this study provides insight into context-specific drivers of cancer progression and highlights the complexities of the EMT process.


Assuntos
Transição Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes , RNA-Seq/métodos , Transdução de Sinais/genética , Análise de Célula Única/métodos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Estimativa de Kaplan-Meier , MicroRNAs/genética , Neoplasias/classificação , Neoplasias/genética , Prognóstico , Modelos de Riscos Proporcionais , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
4.
BMC Med Educ ; 24(1): 379, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589919

RESUMO

The United States government makes a substantial investment in biomedical training programs each year. However, for most trainees, these opportunities do not translate into career progression in academic research pathways. Only about one-fifth of postdoctoral fellows eventually secure a tenure-track faculty position, and even among these candidates, attrition is high. Although a number of factors govern career choices and career longevity, the transition from trainee to faculty is a challenging process and requires knowledge and skills that are not necessarily developed during a traditional university experience. Many postdoctoral fellows receive adequate training in research skills and scientific communication, but new faculty report not being sufficiently prepared for the job search process and for starting their labs. To address this critical training gap, the ITERT core (Interdisciplinary Translational Education and Research Training) and the Office of Postdoctoral Fellows at the University of Texas MD Anderson Cancer Center implemented a structured course for both postdoctoral fellows and senior PhD students to provide formalized training for successfully navigating academic positions in biomedical research. Here we report on the pilot Navigating Academic Careers course conducted in 2021-2022 for 30 PhD students and postdocs. The nine-module course was conducted over 13 weeks in 25.5 h instructional sessions. The key educational objectives included 1) navigating the job application and the interview/negotiation process, 2) hiring, leading, and mentoring lab personnel and program support staff, 3) project administration and financial stewardship, 4) managing time and work-life balance and 5) developing collaborations, branding, personalized niche, and networking. Survey-based analysis at the time of the course was used to capture the participants' assessment of the course content, organization, and delivery, with a follow-up survey conducted approximately 2 years post-course (2024) to evaluate longer-term impacts of the training. Initial in-course assessment revealed that 89.9% of respondents found the scope and instructional content appropriate, and 91.1% found the course relevant and applicable to their career needs. Longer-term post-course evaluation indicated that 80% of respondents applied the learnings of the course, that 80% reported feeling more confident in navigating an academic job search, and that 66.6% continued to report agreement with the course preparing them for their current role/ongoing job search, with 46.7% already securing jobs in academic research, including as independent faculty. The outcomes of this pilot course suggest that integrating this into the broader postdoctoral training curriculum can enhance both the transition and early-career success of talented scientists-in-training into working professionals in biomedical careers, as faculty and science-trained staff.


Assuntos
Pesquisa Biomédica , Tutoria , Humanos , Estados Unidos , Currículo , Docentes , Mentores , Escolha da Profissão
5.
Br J Cancer ; 124(1): 259-269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299129

RESUMO

BACKGROUND: The epithelial-mesenchymal transition (EMT) enables dissociation of tumour cells from the primary tumour mass, invasion through the extracellular matrix, intravasation into blood vessels and colonisation of distant organs. Cells that revert to the epithelial state via the mesenchymal-epithelial transition cause metastases, the primary cause of death in cancer patients. EMT also empowers cancer cells with stem-cell properties and induces resistance to chemotherapeutic drugs. Understanding the driving factors of EMT is critical for the development of effective therapeutic interventions. METHODS: This manuscript describes the generation of a database containing EMT gene signatures derived from cell lines, patient-derived xenografts and patient studies across cancer types and multiomics data and the creation of a web-based portal to provide a comprehensive analysis resource. RESULTS: EMTome incorporates (i) EMT gene signatures; (ii) EMT-related genes with multiomics features across different cancer types; (iii) interactomes of EMT-related genes (miRNAs, transcription factors, and proteins); (iv) immune profiles identified from The Cancer Genome Atlas (TCGA) cohorts by exploring transcriptomics, epigenomics, and proteomics, and drug sensitivity and (iv) clinical outcomes of cancer cohorts linked to EMT gene signatures. CONCLUSION: The web-based EMTome portal is a resource for primary and metastatic tumour research publicly available at www.emtome.org .


Assuntos
Bases de Dados Genéticas , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Transcriptoma/genética , Humanos , Internet , Neoplasias/patologia
6.
Br J Cancer ; 125(2): 176-189, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33795809

RESUMO

BACKGROUND: The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. METHODS: We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout (CD8 and CD4) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. RESULTS: We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8+ T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8+ T-cell function. TCGA pan-cancer data confirmed that CD8lowPlatelethigh patients have a significantly lower survival probability compared to CD8highPlateletlow. CONCLUSIONS: CD8+ T cells inhibit metastasis. When the balance between CD8+ T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8+ T-cell function.


Assuntos
Neoplasias da Mama/imunologia , Antígenos CD4/genética , Antígenos CD8/genética , Linfócitos T CD8-Positivos/transplante , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Fator Plaquetário 4/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Células Supressoras Mieloides/imunologia , Células Neoplásicas Circulantes/imunologia , Fator Plaquetário 4/administração & dosagem , Fator Plaquetário 4/farmacologia , Análise de Sobrevida , Transplante Isogênico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Proc Natl Acad Sci U S A ; 114(46): E9903-E9912, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087350

RESUMO

Expression of the transcription factor FOXC2 is induced and necessary for successful epithelial-mesenchymal transition, a developmental program that when activated in cancer endows cells with metastatic potential and the properties of stem cells. As such, identifying agents that inhibit the growth of FOXC2-transformed cells represents an attractive approach to inhibit chemotherapy resistance and metastatic dissemination. From a high throughput synthetic lethal screen, we identified a small molecule, FiVe1, which selectively and irreversibly inhibits the growth of mesenchymally transformed breast cancer cells and soft tissue sarcomas of diverse histological subtypes. FiVe1 targets the intermediate filament and mesenchymal marker vimentin (VIM) in a mode which promotes VIM disorganization and phosphorylation during metaphase, ultimately leading to mitotic catastrophe, multinucleation, and the loss of stemness. These findings illustrate a previously undescribed mechanism for interrupting faithful mitotic progression and may ultimately inform the design of therapies for a broad range of mesenchymal cancers.


Assuntos
Mitose/efeitos dos fármacos , Sarcoma/metabolismo , Vimentina/metabolismo , Vimentina/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Descoberta de Drogas , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Filamentos Intermediários/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação , Sarcoma/patologia , Fatores de Transcrição/efeitos dos fármacos , Vimentina/química
8.
Breast Cancer Res ; 21(1): 37, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845991

RESUMO

BACKGROUND: Triple-negative breast cancers (TNBCs), which lack receptors for estrogen, progesterone, and amplification of epidermal growth factor receptor 2, are highly aggressive. Consequently, patients diagnosed with TNBCs have reduced overall and disease-free survival rates compared to patients with other subtypes of breast cancer. TNBCs are characterized by the presence of cancer cells with mesenchymal properties, indicating that the epithelial to mesenchymal transition (EMT) plays a major role in the progression of this disease. The EMT program has also been implicated in chemoresistance, tumor recurrence, and induction of cancer stem cell (CSC) properties. Currently, there are no targeted therapies for TNBC, and hence, it is critical to identify the novel targets to treat TNBC. METHODS: A library of compounds was screened for their ability to inhibit EMT in cells with mesenchymal phenotype as assessed using the previously described Z-cad reporters. Of the several drugs tested, GSK3ß inhibitors were identified as EMT inhibitors. The effects of GSK3ß inhibitors on the properties of TNBC cells with a mesenchymal phenotype were assessed using qRT-PCR, flow cytometry, western blot, mammosphere, and migration and cell viability assays. Publicly available datasets also were analyzed to examine if the expression of GSK3ß correlates with the overall survival of breast cancer patients. RESULTS: We identified a GSK3ß inhibitor, BIO, in a drug screen as one of the most potent inhibitors of EMT. BIO and two other GSK3ß inhibitors, TWS119 and LiCl, also decreased the expression of mesenchymal markers in several different cell lines with a mesenchymal phenotype. Further, inhibition of GSK3ß reduced EMT-related migratory properties of cells with mesenchymal properties. To determine if GSK3ß inhibitors target mesenchymal-like cells by affecting the CSC population, we employed mammosphere assays and profiled the stem cell-related cell surface marker CD44+/24- in cells after exposure to GSK3ß inhibitors. We found that GSK3ß inhibitors indeed decreased the CSC properties of cell types with mesenchymal properties. We treated cells with epithelial and mesenchymal properties with GSK3ß inhibitors and found that GSK3ß inhibitors selectively kill cells with mesenchymal attributes while sparing cells with epithelial properties. We analyzed patient data to identify genes predictive of poor clinical outcome that could serve as novel therapeutic targets for TNBC. The Wnt signaling pathway is critical to EMT, but among the various factors known to be involved in Wnt signaling, only the higher expression of GSK3ß correlated with poorer overall patient survival. CONCLUSIONS: Taken together, our data demonstrate that GSK3ß is a potential target for TNBCs and suggest that GSK3ß inhibitors could serve as selective inhibitors of EMT and CSC properties for the treatment of a subset of aggressive TNBC. GSK3ß inhibitors should be tested for use in combination with standard-of-care drugs in preclinical TNBC models.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Conjuntos de Dados como Assunto , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Concentração Inibidora 50 , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Via de Sinalização Wnt
9.
Crit Rev Biochem Mol Biol ; 47(4): 349-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22506713

RESUMO

The control of fluid and electrolyte homeostasis in vertebrates requires the integration of a diverse set of signaling inputs, which control epithelial Na(+) transport, the principal ionic component of extracellular fluid. The key site of regulation is a segment of the kidney tubules, frequently termed the aldosterone-sensitive distal nephron, wherein the epithelial Na(+) channel (or ENaC) mediates apical ion entry. Na(+) transport in this segment is strongly regulated by the salt-retaining hormone, aldosterone, which acts through the mineralocorticoid receptor (MR) to influence the expression of a selected set of target genes, most notably the serine-threonine kinase SGK1, which phosphorylates and inhibits the E3 ubiquitin ligase Nedd4-2. It has long been known that ENaC activity is tightly regulated in vertebrate epithelia. Recent evidence suggests that SGK1 and Nedd4-2, along with other ENaC-regulatory proteins, physically associate with each other and with ENaC in a multi-protein complex. The various components of the complex are regulated by diverse signaling networks, including steroid receptor-, PI3-kinase-, mTOR-, and Raf-MEK-ERK-dependent pathways. In this review, we focus on the organization of the targets of these pathways by multi-domain scaffold proteins and lipid platforms into a unified complex, thereby providing a molecular basis for signal integration in the control of ENaC.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Transdução de Sinais/fisiologia , Aldosterona/metabolismo , Animais , Canais Epiteliais de Sódio/genética , Humanos , Microdomínios da Membrana/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Transdução de Sinais/genética
10.
Clin Cancer Res ; 30(13): 2751-2763, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683200

RESUMO

PURPOSE: To determine the efficacy and safety of risk-adapted combinations of androgen signaling inhibitors and inform disease classifiers for metastatic castration-resistant prostate cancers. PATIENTS AND METHODS: In a modular, randomized phase II trial, 192 men were treated with 8 weeks of abiraterone acetate, prednisone, and apalutamide (AAPA; module 1) and then allocated to modules 2 or 3 based on satisfactory (≥50% PSA decline from baseline and <5 circulating tumor cell/7.5 mL) versus unsatisfactory status. Men in the former were randomly assigned to continue AAPA alone (module 2A) or with ipilimumab (module 2B). Men in the latter group had carboplatin + cabazitaxel added to AAPA (module 3). Optional baseline biopsies were subjected to correlative studies. RESULTS: Median overall survival (from allocation) was 46.4 [95% confidence interval (CI), 39.2-68.2], 41.4 (95% CI, 33.3-49.9), and 18.7 (95% CI, 14.3-26.3) months in modules 2A (n = 64), 2B (n = 64), and 3 (n = 59), respectively. Toxicities were within expectations. Of 192 eligible patients, 154 (80.2%) underwent pretreatment metastatic biopsies. The aggressive-variant prostate cancer molecular profile (defects in ≥2 of p53, RB1, and PTEN) was associated with unsatisfactory status. Exploratory analyses suggested that secreted phosphoprotein 1-positive and insulin-like growth factor-binding protein 2-positive macrophages, druggable myeloid cell markers, and germline pathogenic mutations were enriched in the unsatisfactory group. CONCLUSIONS: Adding ipilimumab to AAPA did not improve outcomes in men with androgen-responsive metastatic castration-resistant prostate cancer. Despite the addition of carboplatin + cabazitaxel, men in the unsatisfactory group had shortened survivals. Adaptive designs can enrich for biologically and clinically relevant disease subgroups to contribute to the development of marker-informed, risk-adapted therapy strategies in men with prostate cancer.


Assuntos
Acetato de Abiraterona , Protocolos de Quimioterapia Combinada Antineoplásica , Prednisona , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/genética , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prednisona/uso terapêutico , Acetato de Abiraterona/uso terapêutico , Acetato de Abiraterona/administração & dosagem , Tioidantoínas/administração & dosagem , Tioidantoínas/uso terapêutico , Tioidantoínas/efeitos adversos , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Ipilimumab/administração & dosagem , Ipilimumab/uso terapêutico , Taxoides
11.
J Biol Chem ; 287(39): 33014-25, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22851176

RESUMO

Hormone regulation of ion transport in the kidney tubules is essential for fluid and electrolyte homeostasis in vertebrates. A large body of evidence has suggested that transporters and channels exist in multiprotein regulatory complexes; however, relatively little is known about the composition of these complexes or their assembly. The epithelial sodium channel (ENaC) in particular is tightly regulated by the salt-regulatory hormone aldosterone, which acts at least in part by increasing expression of the serine-threonine kinase SGK1. Here we show that aldosterone induces the formation of a 1.0-1.2-MDa plasma membrane complex, which includes ENaC, SGK1, and the ENaC inhibitor Nedd4-2, a key target of SGK1. We further show that this complex contains the PDZ domain-containing protein connector enhancer of kinase suppressor of Ras isoform 3 (CNK3). CNK3 physically interacts with ENaC, Nedd4-2, and SGK1; enhances the interactions among them; and stimulates ENaC function in a PDZ domain-dependent, aldosterone-induced manner. These results strongly suggest that CNK3 is a molecular scaffold, which coordinates the assembly of a multiprotein ENaC-regulatory complex and hence plays a central role in Na(+) homeostasis.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Canais Epiteliais de Sódio/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sódio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Aldosterona/farmacologia , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Canais Epiteliais de Sódio/genética , Células HEK293 , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Ubiquitina-Proteína Ligases Nedd4 , Domínios PDZ , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética
12.
Cancers (Basel) ; 15(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37686633

RESUMO

Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic. Recent research has highlighted the crucial role of next-generation sequencing technologies in identifying potential biomarkers associated with lineage plasticity. Here, we review the genomic, transcriptomic, and epigenetic events that have been described in PCa and highlight those with significance for lineage plasticity. We further focus on their relevance in PCa research and their benefits in PCa patient classification. Finally, we explore ways in which bioinformatic analyses can be used to determine lineage plasticity based on large omics analyses and algorithms that can shed light on upstream and downstream events. Most importantly, an integrated multiomics approach may soon allow for the identification of a lineage plasticity signature, which would revolutionize the molecular classification of PCa patients.

13.
Cancers (Basel) ; 15(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136389

RESUMO

Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.

14.
Cell Rep ; 42(12): 113470, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979166

RESUMO

Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.


Assuntos
Carcinoma , Filamentos Intermediários , Humanos , Vimentina/metabolismo , Fosforilação , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Carcinoma/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Metástase Neoplásica/patologia
15.
Proc Natl Acad Sci U S A ; 106(19): 7804-9, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19380724

RESUMO

Hormonal control of transepithelial sodium (Na(+)) transport utilizes phosphatidylinositide 3'-kinase (PI3K) and Raf-MAPK/ERK kinase (MEK)-ERK-dependent signaling pathways, which impact numerous cell functions. How signals transmitted by these pathways are sorted and appropriately transmitted to alter Na(+) transport without altering other physiologic processes is not well understood. Here, we report the identification of a signaling complex that selectively modulates the cell surface expression of the epithelial sodium channel (ENaC), an ion channel that is essential for fluid and electrolyte balance in mammals. Raf-1 and the ubiquitin ligase, Nedd4-2, are constitutively-expressed inhibitory components of this ENaC regulatory complex, which interact with, and decrease the expression of, cell surface ENaC. The activities of Nedd4-2 and Raf-1 are inhibited cooperatively by the PI3K-dependent kinase serum- and glucocorticoid-induced kinase 1 (SGK1), and the Raf-1-interacting protein glucocorticoid-induced leucine zipper (GILZ1), which are aldosterone-stimulated components of the complex. Together, SGK1 and GILZ1 synergistically stimulate ENaC cell surface expression. Interestingly, GILZ1 and SGK1 do not have synergistic, and in fact have opposite, effects on an unrelated activity, FKHRL1-driven gene transcription. Together, these data suggest that GILZ1 and SGK1 provide a physical and functional link between the PI3K- and Raf-1-dependent signaling modules and represent a unique mechanism for specifically controlling Na(+) transport without inappropriately activating other cell functions.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Animais , Sítios de Ligação , Biotinilação , Linhagem Celular , Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Proteínas Imediatamente Precoces/metabolismo , Canais Iônicos/metabolismo , Modelos Biológicos , Ubiquitina-Proteína Ligases Nedd4 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Sódio/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Cancers (Basel) ; 14(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35805010

RESUMO

The aggressive variant prostate cancer molecular profile (AVPC-m), composed of combined defects in TP53, RB1 and PTEN, characterizes a subset of prostate cancers linked to androgen indifference and platinum sensitivity. To contribute to the optimization of the AVPC-m assessment for inclusion in prospective clinical trials, we investigated the status of the AVPC-m components in 28 patient tumor-derived xenografts (PDXs) developed at MDACC. We subjected single formalin-fixed, paraffin-embedded (FFPE) blocks from each PDX to immunohistochemistry (IHC), targeted next-generation genomic sequencing (NGS) and Clariom-S Affymetrix human microarray expression profiling. Standard validated IHC assays and a 10% labeling index cutoff resulted in high reproducibility across three separate laboratories and three independent readers for all tumor suppressors, as well as strong correlations with loss-of-function transcriptional scores (LOF-TS). Adding intensity assessment to labeling indices strengthened the association between IHC results and LOF-TS for TP53 and RB1, but not for PTEN. For TP53, genomic alterations determined by NGS had slightly higher agreement scores with LOF-TS than aberrant IHC, while for RB1 and PTEN, NGS and IHC determinations resulted in similar agreement scores with LOF-TS. Nonetheless, our results indicate that the AVPC-m components can be assessed reproducibly by IHC using various widely available standardized assays.

17.
J Biol Chem ; 285(51): 39905-13, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20947508

RESUMO

Serum- and glucocorticoid-induced kinase 1 (SGK1) is a multifunctional protein kinase that markedly influences various cellular processes such as proliferation, apoptosis, glucose metabolism, and sodium (Na(+)) transport via the epithelial Na(+) channel, ENaC. SGK1 is a short-lived protein, which is predominantly targeted to the endoplasmic reticulum (ER) to undergo rapid proteasome-mediated degradation through the ER-associated degradation (ERAD) system. We show here that the aldosterone-induced chaperone, GILZ1 (glucocorticoid-induced leucine zipper protein-1) selectively decreases SGK1 localization to ER as well as its interaction with ER-associated E3 ubiquitin ligases, HRD1 and CHIP. GILZ1 inhibits SGK1 ubiquitinylation and subsequent proteasome-mediated degradation, thereby prolonging its half-life and increasing its steady-state expression. Furthermore, comparison of the effect of GILZ1 with that of proteasome inhibition (by MG-132) supports the idea that these effects of GILZ1 are secondary to physical interaction of GILZ1 with SGK1 and enhanced recruitment of SGK1 to targets within an "ENaC regulatory complex," thus making less SGK1 available to the ERAD machinery. Finally, effects of GILZ1 knockdown and overexpression strongly support the idea that these effects of GILZ1 are functionally important for ENaC regulation. These data provide new insight into how the manifold activities of SGK1 are selectively deployed and strengthened through modulation of its molecular interactions, subcellular localization, and stability.


Assuntos
Retículo Endoplasmático/metabolismo , Canais Epiteliais de Sódio/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação/fisiologia , Retículo Endoplasmático/genética , Canais Epiteliais de Sódio/imunologia , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
18.
J Biol Chem ; 285(40): 30363-9, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20624922

RESUMO

The kidney has a central role in the regulation of blood pressure, in large part through its role in the regulated reabsorption of filtered Na(+). Epithelial Na(+) channels (ENaCs) are expressed in the most distal segments of the nephron and are a target of volume regulatory hormones. A variety of factors regulate ENaC activity, including several aldosterone-induced proteins that are present within an ENaC regulatory complex. Proteases also regulate ENaC by cleaving the channel and releasing intrinsic inhibitory tracts. Polymorphisms or mutations within channel subunits or regulatory pathways that enhance channel activity may contribute to an increase in blood pressure in individuals with essential hypertension.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Hipertensão/metabolismo , Néfrons/metabolismo , Sódio/metabolismo , Aldosterona/genética , Aldosterona/metabolismo , Animais , Pressão Sanguínea/genética , Canais Epiteliais de Sódio/genética , Humanos , Hipertensão/genética , Mutação
19.
Cancers (Basel) ; 13(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771571

RESUMO

Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that in metastatic cancer cells, epithelial and mesenchymal markers are co-expressed to facilitate the cells' ability to go back and forth between cellular states. This feature is called epithelial-to-mesenchymal plasticity (EMP). CTCs represent a unique source to understand the EMP features in metastatic cascade biology. Our group previously established and characterized nine serial CTC lines from a patient with metastatic colon cancer. Here, we assessed the expression of markers involved in epithelial-mesenchymal (EMT) and mesenchymal-epithelial (MET) transition in these unique CTC lines, to define their EMP profile. We found that the oncogenes MYC and ezrin were expressed by all CTC lines, but not SIX1, one of their common regulators (also an EMT inducer). Moreover, the MET activator GRHL2 and its putative targets were strongly expressed in all CTC lines, revealing their plasticity in favor of an increased MET state that promotes metastasis formation.

20.
NPJ Breast Cancer ; 7(1): 66, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050189

RESUMO

Breast cancer is the most commonly diagnosed cancer in the USA. Although advances in treatment over the past several decades have significantly improved the outlook for this disease, most women who are diagnosed with estrogen receptor positive disease remain at risk of metastatic relapse for the remainder of their life. The cellular source of late relapse in these patients is thought to be disseminated tumor cells that reactivate after a long period of dormancy. The biology of these dormant cells and their natural history over a patient's lifetime is largely unclear. We posit that research on tumor dormancy has been significantly limited by the lack of clinically relevant models. This review will discuss existing dormancy models, gaps in biological understanding, and propose criteria for future models to enhance their clinical relevance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA