Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 50(2): 1251-1268, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33284308

RESUMO

This review focuses on recent fundamental insights about methane dehydroaromatization (MDA) to benzene over ZSM-5-supported transition metal oxide-based catalysts (MOx/ZSM-5, where M = V, Cr, Mo, W, Re, Fe). Benzene is an important organic intermediate, used for the synthesis of chemicals like ethylbenzene, cumene, cyclohexane, nitrobenzene and alkylbenzene. Current production of benzene is primarily from crude oil processing, but due to the abundant availability of natural gas, there is much recent interest in developing direct processes to convert CH4 to liquid chemicals. Among the various gas-to-liquid methods, the thermodynamically-limited Methane DehydroAromatization (MDA) to benzene under non-oxidative conditions appears very promising as it circumvents deep oxidation of CH4 to CO2 and does not require the use of a co-reactant. The findings from the MDA catalysis literature is critically analyzed with emphasis on in situ and operando spectroscopic characterization to understand the molecular level details regarding the catalytic sites before and during the MDA reaction. Specifically, this review discusses the anchoring sites of the supported MOx species on the ZSM-5 support, molecular structures of the initial dispersed surface MOx sites, nature of the active sites during MDA, reaction mechanisms, rate-determining step, kinetics and catalyst activity of the MDA reaction. Finally, suggestions are given regarding future experimental investigations to fill the information gaps currently found in the literature.

2.
Angew Chem Int Ed Engl ; 60(39): 21502-21511, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34339591

RESUMO

The complex structure of the catalytic active phase, and surface-gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2 WO4 /SiO2 catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2 -TPR, TAP and steady-state kinetics) experiments, that the long speculated crystalline Na2 WO4 active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na-WOx sites. Kinetic analysis via temporal analysis of products (TAP) and steady-state OCM reaction studies demonstrate that (i) surface Na-WOx sites are responsible for selectively activating CH4 to C2 Hx and over-oxidizing CHy to CO and (ii) molten Na2 WO4 phase is mainly responsible for over-oxidation of CH4 to CO2 and also assists in oxidative dehydrogenation of C2 H6 to C2 H4 . These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2 WO4 /SiO2 catalysts.

3.
ACS Catal ; 13(19): 12681-12691, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822859

RESUMO

The effect of Ce addition to the Cr-free Al-promoted Cu-Fe oxide-based catalysts is investigated. Catalyst characterization (X-ray diffraction (XRD), in situ Raman spectroscopy, high-sensitivity low-energy ion scattering (HS-LEIS), Brunauer-Emmett-Teller (BET) analysis), CO-temperature-programmed reduction chemical probing, and steady-state WGS activity reveal that (i) in the absence of Al, Ce addition via coprecipitation has a detrimental effect on the catalytic activity related to the poor thermostability and formation of less active Ce-Cu-O NPs, (ii) the addition of Ce via coprecipitation also does not improve the performance of the CuAlFe catalyst because of the formation of a thick CeOx overlayer on the active Cu-FeOx interface, and (iii) impregnation of Ce onto the CuAlFe catalyst exhibits significant improvement in catalytic performance due to the formation of a highly active CeOx-FeOx-Cu interfacial area. In summary, Al does not surface-segregate and serves as a structural promoter, while Ce and Cu surface-segregate and act as functional promoters in Ce/CuAlFe mixed oxide catalysts.

4.
ACS Nano ; 17(21): 21480-21492, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906709

RESUMO

A nonthermal, atmospheric He/O2 plasma (NTAP) successfully removed polyvinylpyrrolidone (PVP) from Pd cubic nanoparticles supported on SiO2 quickly and controllably. Transmission electron microscopy (TEM) revealed that the shape and size of Pd nanoparticles remain intact during plasma treatment, unlike mild calcination, which causes sintering and polycrystallinity. Using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), we demonstrate the quantitative estimation of the PVP plasma removal rate and control of the nanoparticle synthesis. First-principles calculations of the XPS and CO FTIR spectra elucidate electron transfer from the ligand to the metal and allow for estimates of ligand coverages. Reactivity testing indicated that PVP surface crowding inhibits furfural conversion but does not alter furfural selectivity. Overall, the data demonstrate NTAP as a more efficient method than traditional calcination for organic ligand removal in nanoparticle synthesis.

5.
Carbohydr Res ; 531: 108890, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406515

RESUMO

A metal free synthesis of enantiopure 2,3-dideoxy-α, ß-unsaturated carbohydrate enals (Perlin aldehydes), in CH3CN-0.02 N H2SO4 in water (1:1, v/v) with 0.5 equivalent additives (4-hydroxy-6-methyl-2-pyrone or 4-amino coumarin), has been reported. This efficient protocol works well for the acetylated glycals (glucal, galactal and arabinal) and afforded Perlin aldehydes and hemiacetals in acceptable to good yields. Whereas, benzylated glycals furnished respective Perlin aldehydes, hemiacetals and the 2-deoxy derivatives, under similar reaction conditions. The products yields were significantly reduced when the additives were removed from the reaction mixture, indicating that they constitute an essential component of this approach. Further the use of 0.02 N H2SO4 in water: acetonitrile (1:1, v/v) solvent system is essential for the formation of Perlin aldehydes. The similar reactions under neutral reaction conditions (CH3CN:H2O, 1:1, v/v) with additives, afforded the hemiacetals as major product. This methodology is a metal free approach to Perlin aldehyde synthesis and therefore having additional benefit of its use in preparation of bioactive drug molecules, where metal toxicity is the major concern.


Assuntos
Aldeídos , Carboidratos , Metais , Água
6.
Chem Sci ; 12(42): 14143-14158, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34760199

RESUMO

The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO4 catalytic active sites resulting in surface WO5 sites with retarded kinetics for C-H scission. On the other hand, dimeric Mn2O5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH4 than the poisoned surface WO5 sites or the original WO4 sites. However, the surface reaction intermediates formed from CH4 activation over the Mn2O5 surface sites are more stable than those formed over the Na2WO4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to CO x , in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na2WO4 surface sites towards CH4 activation but can yield MnO x surface sites that activate CH4 faster than Na2WO4 surface sites, but unselectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA