Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2019: 1965364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396298

RESUMO

BACKGROUND AND AIM: Exercise is an effective strategy to reduce obesity-induced oxidative stress. The purpose of this study was to compare the effects of two training modalities (moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT)) on the pro/antioxidant status of different tissues in obese Zucker rats. METHODS: Eight-week-old male Zucker rats (fa/fa, n = 36) were subdivided in three groups: MICT, HIIT, and control (no exercise) groups. Trained animals ran on a treadmill (0° slope), 5 days/week for 10 weeks (MICT: 51 min at 12 m·min-1; HIIT: 6 sets of 3 min at 10 m·min-1 followed by 4 min at 18 m·min-1). Epididymal (visceral) and subcutaneous adipose tissue, gastrocnemius muscle, and plasma samples were collected to measure oxidative stress markers (advanced oxidation protein products (AOPP), oxidized low-density lipoprotein (oxLDL)), antioxidant system markers (ferric-reducing ability of plasma (FRAP), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities), and prooxidant enzymes (NADPH oxidase and xanthine oxidase (XO) activities, myeloperoxidase content). RESULTS: Compared with the control, MICT increased GPx and catalase activities and the FRAP level in epididymal adipose tissue. HIIT increased the AOPP level in subcutaneous adipose tissue. In the muscle, HIIT increased both SOD and GPx activities and reduced the AOPP level, whereas MICT increased only SOD activity. Finally, plasma myeloperoxidase content was similarly decreased by both training modalities, whereas oxLDL was reduced only in the MICT group. CONCLUSION: Both HIIT and MICT improved the pro/antioxidant status. However, HIIT was more efficient than MICT in the skeletal muscle, whereas MICT was more efficient in epididymal adipose tissue. This suggests that oxidative stress responses to HIIT and MICT are tissue-specific. This could result in ROS generation via different pathways in these tissues. From a practical point of view, the two training modalities should be combined to obtain a global response in people with obesity.


Assuntos
Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal , Animais , Antioxidantes/metabolismo , Glutationa Peroxidase/metabolismo , Treinamento Intervalado de Alta Intensidade , Lipoproteínas LDL/sangue , Masculino , Malondialdeído/sangue , NADPH Oxidases/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Oxidantes/metabolismo , Ratos , Ratos Zucker , Superóxido Dismutase/metabolismo
2.
PLoS One ; 14(4): e0214660, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30964881

RESUMO

AIMS: Increased visceral adipose tissue and dysbiosis in the overweight and obese promote chronic inflammation. The aim of this study was to compare the effects of moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT) on the gut-adipose tissue cross-talk in obese Zucker rats. METHODS: Obese male Zucker rats (n = 36) were divided in three groups: MICT (12m.min-1 for 51min), HIIT (6 sets at 18 m.min-1 for 4min followed by 3min at 10m.min-1) and controls (CONT; no exercise). The animals ran on a treadmill 5 days/week for 10 weeks. Body composition, glycaemic control, lipid profile, inflammation, lipolysis signalling in subcutaneous and visceral adipose tissue, intestinal permeability (tight junctions and plasma lipopolysaccharide binding protein; LBP), and gut microbiota composition were assessed in the three groups. RESULTS: After 10 weeks of exercise, total and epididymal fat mass decreased only in the HIIT group. The α/ß adrenergic receptor RNA ratio in subcutaneous adipose tissue increased only in the HIIT group. The expression level of phosphorylated hormone-sensitive lipase was not modified by training. Both HIIT and MICT decreased inflammation (plasma myeloperoxidase and keratinocyte-derived chemokine secretion in adipose tissue) and improved glucose metabolism. Zonula occludens-1 and occludin were upregulated in the HIIT group. Plasma LBP was similarly reduced in both training groups. HIIT and MICT did not affect gut microbiota composition. CONCLUSION: In obese Zucker rats, HIIT and MICT improved inflammation and glucose metabolism. In contrast, only HIIT decreased total and visceral fat mass. These adaptations were not associated with modifications in gut microbiota composition.


Assuntos
Gordura Intra-Abdominal/metabolismo , Condicionamento Físico Animal , Proteínas de Fase Aguda , Animais , Composição Corporal , Proteínas de Transporte/sangue , Metabolismo Energético , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Glucose/metabolismo , Masculino , Glicoproteínas de Membrana/sangue , Ocludina/genética , Ocludina/metabolismo , Ratos , Ratos Zucker , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
3.
Data Brief ; 18: 190-197, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29896510

RESUMO

MicroRNA (miRNA) are found in numerous biofluids including blood and are considered a new class of biomarkers. In several animal models as well as in human diseases, they are interesting circulating markers of acute or chronic tissue injury. This article provides additional data related to a previous research article entitled "Circulating miRNAs as biomarkers of acute muscle damage in rats" by Siracusa et al. (2016) [1]. The data were obtained by RT-qPCR performed on plasma of rats exposed to acute muscle damage. The present set of data displays 45 non muscle-specific miRNA responses to acute, experimental muscle injury in healthy rats. They complement previous findings showing that circulating levels of miRNAs can be affected by muscle damage.

4.
Front Physiol ; 9: 684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922177

RESUMO

Skeletal muscle is a heterogeneous tissue composed of a continuum of contracting fibers ranging from slow-type to fast-type fibers. Muscle damage is a frequent event and a susceptibility of fast-fibers to exercise-induced damage (EIMD) or statins toxicity has been reported. Biological markers of muscle damage such as creatine kinase (CK) are not fiber-type specific and new biomarkers are needed. Some microRNAs (miRNAs) are specific to the muscle tissue, can be found in the extracellular compartment and can rise in the plasma following muscle damage. Our aim was to identify whether a set of circulating miRNAs can be used as fiber-type specific biomarkers of muscle damage in a model of traumatic (crush) injuries induced either in the slow soleus (SOL) or in the fast extensor digitorum longus (EDL) muscles of rats. A subset of miRNAs composed of miR-1-3p, -133a-3p, -133b-3p, 206-3p, -208b-3p, 378a-3p, -434-3p, and -499-5p were measured by RT-PCR in non-injured SOL or EDL muscle and in the plasma of rats 12 h after damage induced to SOL or EDL. MiR-133b-3p, -378a-3p, and -434-3p were equally expressed both in SOL and EDL muscles. MiR-1-3-p and -133a-3p levels were higher in EDL compared to SOL (1.3- and 1.1-fold, respectively). Conversely, miR-206-3p, -208b-3p, and -499-5p were mainly expressed in SOL compared to EDL (7.4-, 35.4-, and 10.7-fold, respectively). In the plasma, miR-1-3p and -133a-3p were elevated following muscle damage compared to a control group, with no difference between SOL and EDL. MiR-133b-3p and -434-3p plasma levels were significantly higher in EDL compared to SOL (1.8- and 2.4-fold, respectively), while miR-378a-3p rose only in the EDL group. MiR-206-3p levels were elevated in SOL only (fourfold compared to EDL). Our results show that plasma miR-133b-3p and -434 are fast-fiber specific biomarkers, while miR-206-3p is a robust indicator of slow-fiber damage, opening new perspectives to monitor fiber-type selective muscle damage in research and clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA