Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Immunopathol ; 41(2): 153-164, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30276444

RESUMO

Women develop stronger immune responses than men, with positive effects on the resistance to viral or bacterial infections but magnifying also the susceptibility to autoimmune diseases like systemic lupus erythematosus (SLE). In SLE, the dosage of the endosomal Toll-like receptor 7 (TLR7) is crucial. Murine models have shown that TLR7 overexpression suffices to induce spontaneous lupus-like disease. Conversely, suppressing TLR7 in lupus-prone mice abolishes SLE development. TLR7 is encoded by a gene on the X chromosome gene, denoted TLR7 in humans and Tlr7 in the mouse, and expressed in plasmacytoid dendritic cells (pDC), monocytes/macrophages, and B cells. The receptor recognizes single-stranded RNA, and its engagement promotes B cell maturation and the production of pro-inflammatory cytokines and antibodies. In female mammals, each cell randomly inactivates one of its two X chromosomes to equalize gene dosage with XY males. However, 15 to 23% of X-linked human genes escape X chromosome inactivation so that both alleles can be expressed simultaneously. It has been hypothesized that biallelic expression of X-linked genes could occur in female immune cells, hence fostering harmful autoreactive and inflammatory responses. We review here the current knowledge of the role of TLR7 in SLE, and recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in pDCs, monocytes, and B lymphocytes from women and Klinefelter syndrome men. Female B cells where TLR7 is thus biallelically expressed display higher TLR7-driven functional responses, connecting the presence of two X chromosomes with the enhanced immunity of women and their increased susceptibility to TLR7-dependent autoimmune syndromes.


Assuntos
Cromossomos Humanos X , Dosagem de Genes/imunologia , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico , Caracteres Sexuais , Receptor 7 Toll-Like , Inativação do Cromossomo X/imunologia , Animais , Cromossomos Humanos X/genética , Cromossomos Humanos X/imunologia , Feminino , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia
2.
Sci Immunol ; 3(19)2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374079

RESUMO

Toll-like receptor 7 (TLR7) is critical to the induction of antiviral immunity, but TLR7 dosage is also a key pathogenic factor in systemic lupus erythematosus (SLE), an autoimmune disease with strong female bias. SLE prevalence is also elevated in individuals with Klinefelter syndrome, who carry one or more supernumerary X chromosomes, suggesting that the X chromosome complement contributes to SLE susceptibility. TLR7 is encoded by an X chromosome locus, and we examined here whether the TLR7 gene evades silencing by X chromosome inactivation in immune cells from women and Klinefelter syndrome males. Single-cell analyses of TLR7 allelic expression demonstrated that substantial fractions of primary B lymphocytes, monocytes, and plasmacytoid dendritic cells not only in women but also in Klinefelter syndrome males express TLR7 on both X chromosomes. Biallelic B lymphocytes from women displayed greater TLR7 transcriptional expression than the monoallelic cells, correlated with higher TLR7 protein expression in female than in male leukocyte populations. Biallelic B cells were preferentially enriched during the TLR7-driven proliferation of CD27+ plasma cells. In addition, biallelic cells showed a greater than twofold increase over monoallelic cells in the propensity to immunoglobulin G class switch during the TLR7-driven, T cell-dependent differentiation of naive B lymphocytes into immunoglobulin-secreting cells. TLR7 escape from X inactivation endows the B cell compartment with added responsiveness to TLR7 ligands. This finding supports the hypothesis that enhanced TLR7 expression owing to biallelism contributes to the higher risk of developing SLE and other autoimmune disorders in women and in men with Klinefelter syndrome.


Assuntos
Ativação Linfocitária/imunologia , Receptor 7 Toll-Like/imunologia , Inativação do Cromossomo X/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/fisiologia , Células Dendríticas/imunologia , Feminino , Humanos , Switching de Imunoglobulina/imunologia , Imunoglobulina G/imunologia , Ligantes , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA