Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628601

RESUMO

Three-dimensional (3D) cultures, so-called organoids, have emerged as an attractive tool for disease modeling and therapeutic innovations. Here, we aim to determine if boundary cap neural crest stem cells (BC) can survive and differentiate in gelatin-based 3D bioprinted bioink scaffolds in order to establish an enabling technology for the fabrication of spinal cord organoids on a chip. BC previously demonstrated the ability to support survival and differentiation of co-implanted or co-cultured cells and supported motor neuron survival in excitotoxically challenged spinal cord slice cultures. We tested different combinations of bioink and cross-linked material, analyzed the survival of BC on the surface and inside the scaffolds, and then tested if human iPSC-derived neural cells (motor neuron precursors and astrocytes) can be printed with the same protocol, which was developed for BC. We showed that this protocol is applicable for human cells. Neural differentiation was more prominent in the peripheral compared to central parts of the printed construct, presumably because of easier access to differentiation-promoting factors in the medium. These findings show that the gelatin-based and enzymatically cross-linked hydrogel is a suitable bioink for building a multicellular, bioprinted spinal cord organoid, but that further measures are still required to achieve uniform neural differentiation.


Assuntos
Células-Tronco Neurais , Organoides , Gelatina , Humanos , Crista Neural , Medula Espinal
2.
medRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633814

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.

3.
Cell Genom ; : 100679, 2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39437787

RESUMO

Repeat expansions in the C9orf72 gene are the most common genetic cause of (ALS) and frontotemporal dementia (FTD). Like other genetic forms of neurodegeneration, pinpointing the precise mechanism(s) by which this mutation leads to neuronal death remains elusive, and this lack of knowledge hampers the development of therapy for C9orf72-related disease. We used an agnostic approach based on genomic data (n = 41,273 ALS and healthy samples, and n = 1,516 C9orf72 carriers) to overcome these bottlenecks. Our drug-repurposing screen, based on gene- and expression-pattern matching and information about the genetic variants influencing onset age among C9orf72 carriers, identified acamprosate, a γ-aminobutyric acid analog, as a potentially repurposable treatment for patients carrying C9orf72 repeat expansions. We validated its neuroprotective effect in cell models and showed comparable efficacy to riluzole, the current standard of care. Our work highlights the potential value of genomics in repurposing drugs in situations where the underlying pathomechanisms are inherently complex. VIDEO ABSTRACT.

4.
bioRxiv ; 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35291294

RESUMO

New therapeutic targets are a valuable resource in the struggle to reduce the morbidity and mortality associated with the COVID-19 pandemic, caused by the SARS-CoV-2 virus. Genome-wide association studies (GWAS) have identified risk loci, but some loci are associated with co-morbidities and are not specific to host-virus interactions. Here, we identify and experimentally validate a link between reduced expression of EXOSC2 and reduced SARS-CoV-2 replication. EXOSC2 was one of 332 host proteins examined, all of which interact directly with SARS-CoV-2 proteins; EXOSC2 interacts with Nsp8 which forms part of the viral RNA polymerase. Lung-specific eQTLs were identified from GTEx (v7) for each of the 332 host proteins. Aggregating COVID-19 GWAS statistics for gene-specific eQTLs revealed an association between increased expression of EXOSC2 and higher risk of clinical COVID-19 which survived stringent multiple testing correction. EXOSC2 is a component of the RNA exosome and indeed, LC-MS/MS analysis of protein pulldowns demonstrated an interaction between the SARS-CoV-2 RNA polymerase and the majority of human RNA exosome components. CRISPR/Cas9 introduction of nonsense mutations within EXOSC2 in Calu-3 cells reduced EXOSC2 protein expression, impeded SARS-CoV-2 replication and upregulated oligoadenylate synthase ( OAS) genes, which have been linked to a successful immune response against SARS-CoV-2. Reduced EXOSC2 expression did not reduce cellular viability. OAS gene expression changes occurred independent of infection and in the absence of significant upregulation of other interferon-stimulated genes (ISGs). Targeted depletion or functional inhibition of EXOSC2 may be a safe and effective strategy to protect at-risk individuals against clinical COVID-19.

5.
Neuron ; 110(6): 992-1008.e11, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35045337

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Morte Celular/genética , Proteínas do Citoesqueleto/genética , Estudo de Associação Genômica Ampla , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/patologia
6.
Front Cell Neurosci ; 15: 784833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975412

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by degeneration of upper and lower motor neurons and neurons of the prefrontal cortex. The emergence of the C9ORF72 hexanucleotide repeat expansion mutation as the leading genetic cause of ALS and FTD has led to a progressive understanding of the multiple cellular pathways leading to neuronal degeneration. Disturbances in neuronal function represent a major subset of these mechanisms and because such functional perturbations precede degeneration, it is likely that impaired neuronal function in ALS/FTD plays an active role in pathogenesis. This is supported by the fact that ALS/FTD patients consistently present with neurophysiological impairments prior to any apparent degeneration. In this review we summarize how the discovery of the C9ORF72 repeat expansion mutation has contributed to the current understanding of neuronal dysfunction in ALS/FTD. Here, we discuss the impact of the repeat expansion on neuronal function in relation to intrinsic excitability, synaptic, network and ion channel properties, highlighting evidence of conserved and divergent pathophysiological impacts between cortical and motor neurons and the influence of non-neuronal cells. We further highlight the emerging association between these dysfunctional properties with molecular mechanisms of the C9ORF72 mutation that appear to include roles for both, haploinsufficiency of the C9ORF72 protein and aberrantly generated dipeptide repeat protein species. Finally, we suggest that relating key pathological observations in C9ORF72 repeat expansion ALS/FTD patients to the mechanistic impact of the C9ORF72 repeat expansion on neuronal function will lead to an improved understanding of how neurophysiological dysfunction impacts upon pathogenesis.

7.
Mol Neurodegener ; 16(1): 53, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376242

RESUMO

BACKGROUND: Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these pathological gene expression changes require therapeutic normalisation remains a fundamental question. METHODS: Here, we investigated genome-wide RNA changes in C9ORF72-ALS patient-derived neurons and Drosophila, as well as upon neuroprotection taking advantage of our gene therapy approach which specifically inhibits the SRSF1-dependent nuclear export of pathological C9ORF72-repeat transcripts. This is a critical study to evaluate (i) the overall safety and efficacy of the partial depletion of SRSF1, a member of a protein family involved itself in gene expression, and (ii) a unique opportunity to identify neuroprotective RNA changes. RESULTS: Our study shows that manipulation of 362 transcripts out of 2257 pathological changes, in addition to inhibiting the nuclear export of repeat transcripts, is sufficient to confer neuroprotection in C9ORF72-ALS patient-derived neurons. In particular, expression of 90 disease-altered transcripts is fully reverted upon neuroprotection leading to the characterisation of a human C9ORF72-ALS disease-modifying gene expression signature. These findings were further investigated in vivo in diseased and neuroprotected Drosophila transcriptomes, highlighting a list of 21 neuroprotective changes conserved with 16 human orthologues in patient-derived neurons. We also functionally validated the high neuroprotective potential of one of these disease-modifying transcripts, demonstrating that inhibition of ALS-upregulated human KCNN1-3 (Drosophila SK) voltage-gated potassium channel orthologs mitigates degeneration of human motor neurons and Drosophila motor deficits. CONCLUSIONS: Strikingly, the partial depletion of SRSF1 leads to expression changes in only a small proportion of disease-altered transcripts, indicating that not all RNA alterations need normalization and that the gene therapeutic approach is safe in the above preclinical models as it does not disrupt globally gene expression. The efficacy of this intervention is also validated at genome-wide level with transcripts modulated in the vast majority of biological processes affected in C9ORF72-ALS. Finally, the identification of a characteristic signature with key RNA changes modified in both the disease state and upon neuroprotection also provides potential new therapeutic targets and biomarkers.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/metabolismo , Neurônios/metabolismo , RNA/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Drosophila , Humanos , Neurônios/patologia , Neuroproteção/fisiologia
8.
Biomolecules ; 10(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272581

RESUMO

Inflammation and oxidative stress are common aspects of most neurodegenerative diseases in the central nervous system. In this context, microglia and astrocytes are central to mediating the balance between neuroprotective and neurodestructive mechanisms. Flavonoids have potent anti-inflammatory and antioxidant properties. Here, we have examined the anti-inflammatory and neuroprotective potential of the flavonoid agathisflavone (FAB), which is derived from the Brazilian plant Poincianella pyramidalis, in in vitro models of neuroinflammation. Cocultures of neurons/glial cells were exposed to lipopolysaccharide (LPS, 1 µg/mL) or interleukin (IL)-1ß (10 ng/mL) for 24 h and treated with FAB (0.1 and 1 µM, 24 h). FAB displayed a significant neuroprotective effect, as measured by nitric oxide (NO) production, Fluoro-Jade B (FJ-B) staining, and immunocytochemistry (ICC) for the neuronal marker ß-tubulin and the cell death marker caspase-3, preserving neuronal soma and increasing neurite outgrowth. FAB significantly decreased the LPS-induced microglial proliferation, identified by ICC for Iba-1/bromodeoxyuridine (BrdU) and CD68 (microglia M1 profile marker). In contrast, FAB had no apparent effect on astrocytes, as determined by ICC for glial fibrillary acidic protein (GFAP). Furthermore, FAB protected against the cytodestructive and proinflammatory effects of IL-1ß, a key cytokine that is released by activated microglia and astrocytes, and ICC showed that combined treatment of FAB with α and ß estrogen receptor antagonists did not affect NF-κB expression. In addition, qPCR analysis demonstrated that FAB decreased the expression of proinflammatory molecules TNF-α, IL-1ß, and connexins CCL5 and CCL2, as well as increased the expression of the regulatory molecule IL-10. Together, these findings indicate that FAB has a significant neuroprotective and anti-inflammatory effect in vitro, which may be considered as an adjuvant for the treatment of neurodegenerative diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Biflavonoides/farmacologia , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fitoestrógenos/farmacologia , Anti-Inflamatórios/uso terapêutico , Biflavonoides/uso terapêutico , Técnicas de Cocultura , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Neuroglia/patologia , Neurônios/patologia , Fitoestrógenos/uso terapêutico
9.
Front Aging Neurosci ; 12: 119, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499693

RESUMO

Neurodegenerative disorders (ND) are characterized by the progressive and irreversible loss of neurons. Alzheimer's Disease (AD) is the most incident age-related ND, in which the presence of a chronic inflammatory compound seems to be related to its pathogenesis. Different stimuli in the central nervous system (CNS) can induce activation, proliferation, and changes in phenotype and glial function, which can be modulated by anti-inflammatory agents. Apigenin (4,5,7-trihydroxyflavone) is a flavonoid found in abundance in many fruits and vegetables, that has shown important effects upon controlling the inflammatory response. This study evaluated the neuroprotective and neuroimmunomodulatory potential of apigenin using in vitro models of neuroinflammation associated with AD. Co-cultures of neurons and glial cells were obtained from the cortex of newborn and embryonic Wistar rats. After 26 days in vitro, cultures were exposed to lipopolysaccharide (LPS; 1 µg/ml), or IL-1ß (10 ng/ml) for 24 h, or to Aß oligomers (500 nM) for 4 h, and then treated with apigenin (1 µM) for further 24 h. It was observed that the treatment with apigenin preserved neurons and astrocytes integrity, determined by Rosenfeld's staining and immunocytochemistry for ß-tubulin III and GFAP, respectively. Moreover, it was observed by Fluoro-Jade-B and caspase-3 immunostaining that apigenin was not neurotoxic and has a neuroprotective effect against inflammatory damage. Additionally, apigenin reduced microglial activation, characterized by inhibition of proliferation (BrdU+ cells) and modulation of microglia morphology (Iba-1 + cells), and decreased the expression of the M1 inflammatory marker CD68. Moreover, as determined by RT-qPCR, inflammatory stimuli induced by IL-1ß increased the mRNA expression of IL-6, IL-1ß, and CCL5, and decreased the mRNA expression of IL-10. Contrary, after treatment with apigenin in inflammatory stimuli (IL-1ß or LPS) there was a modulation of the mRNA expression of inflammatory cytokines, and reduced expression of OX42, IL-6 and gp130. Moreover, apigenin alone and after an inflammatory stimulus with IL-1ß also induced the increase in the expression of brain-derived neurotrophic factor (BDNF), an effect that may be associated with anti-inflammatory and neuroprotective effects. Together these data demonstrate that apigenin presents neuroprotective and anti-inflammatory effects in vitro and might represent an important neuroimmunomodulatory agent for the treatment of neurodegenerative conditions.

10.
Nat Prod Commun ; 9(9): 1245-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25918783

RESUMO

Plant secondary metabolites, such as, specifically, alkaloids and terpenes, may present psychoactive properties that modify the function of the central nervous system (CNS) and induce neurotoxicity. Neurotoxicity involves the response of glial cells, mainly astrocytes, which play a fundamental role in the control of homeostasis of the CNS. Some Erythroxylum species are indigenous to the state of Bahia in Brazil. This study investigated the cytotoxic activity of the diterpene AEP-1, extracted from the fruit of E. passerinum in a GL-15 cell line, astrocytic, glial cells model. The effects on cell viability, analyzed by the MTT assay, demonstrated a dose-dependent cytotoxic effect, with maximum effect at 500 µg/mL of AEP-1, and with a reduction of about 40 and 47% on cellular viability after 24 h and 72 h treatment, respectively. Evidence for induction of apoptosis by AEP-1 was first obtained when GL-15 glial cells were incubated with 250 µg/mL AEP-1 causing reniform and/or pyknotic nuclei and apoptotic bodies revealed by chromatin staining with Hoechst 33258. Increase in DNA fragmentation was also observed by comet assays in cells incubated with 500 µg/mL of AEP-1. Moreover, cells exposed to a sub toxic dose of AEP-1 (250 µg/mL) showed significant changes in morphology--contraction of the cytoplasm and expansion of cellular projections--signifying the presence of astrocytic cytoskeletal protein and glial fibrillary acidic protein (GFAP). These findings indicated astrocytic cells as the target for terpene AEP-1 and suggest the involvement of glial cells with psychoactive symptoms observed in humans and animals after consumption of fruits of plants of the genus Erythroxylum.


Assuntos
Astrócitos/citologia , Astrocitoma/fisiopatologia , Diterpenos/farmacologia , Erythroxylaceae/química , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Fragmentação do DNA/efeitos dos fármacos , Humanos , Modelos Biológicos
11.
Rev. bras. farmacogn ; 26(1): 34-43, Jan.-Feb. 2016. graf
Artigo em Inglês | LILACS | ID: lil-772632

RESUMO

Abstract This study investigated the effects of the flavonoids 5-hydroxy-7,4′-dimethoxyflavone, casticin, and penduletin, isolated from Croton betulaster Müll Arg., Euphorbiaceae, a plant utilized in popular medicine in Brazil, on the growth and viability of the human glioblastoma cell line GL-15. We observed that 5-hydroxy-7,4′-dimethoxyflavone and casticin were not toxic to GL-15 cells after 24 h of exposure. However, casticin and penduletin inhibited the metabolic activity of glioblastoma cells significantly at a concentration of 10 µM (p ≤ 0.05). Flavonoids casticin and penduletin also induced a significant and dose-dependent growth inhibition beginning at 24 h of exposure, and the most potent flavonoid was penduletin. It was also observed that penduletin and casticin induced an enlargement of the cell body and a reduction of cellular processes, accompanied by changes in the pattern of expression of the cytoskeletal protein vimentin. Signs of apoptosis, such as the externalization of membrane phosphatidyl serine residues, nuclear condensation, and fragmentation, were also detected in cells treated with 50–100 µM flavonoids. Our results indicate that flavonoids extracted from C. betulaster present antitumoral activity to glioblastoma cells, with penduletin proving to be the most potent of the tested flavonoids. Our results also suggest that these molecules may be promising supplementary drugs for glioblastoma treatment.

12.
Braz. j. vet. res. anim. sci ; 43(supl): 50-58, 2006. ilus, graf
Artigo em Inglês | LILACS | ID: lil-473525

RESUMO

Prosopis juliflora is largely used for feeding cattle and humans. Neurological signals have been reported in cattle due to intoxication with this plant. In this study, an alkaloidal fraction (AF) obtained from P. juliflora pods was tested on astrocyte primary cultures. Astrocytes display physiological functions essential to development, homeostasis and detoxification in the central nervous system (CNS). These cells are known for their role on energetic support and immune response in the CNS. Concentrations between 0.03 to 30 µg/ml AF were assayed for 24 - 72 h. The mitochondrial activity, assayed by MTT test, showed cytotoxicity at 30 µg/ml AF after 24 h. At concentrations ranging between 0.3 - 3 µg/ ml, the AF induced an increase on mitochondrial activity, indicating cell reactivity. lmmunocytochemistry assay for GFAP cytoskeletal protein, revealed alterations on cell morphology after treatment with 0.3 - 3 µg/ ml AF for 72 h. This result corroborates with western blot analysis when ceUs treated with 0.3 - 3 I-µg/ml AF for 72 h showed GFAP upregulation. The vimentin expression was not significantly altered in all tested concentrations. These results suggest that alkaloids induce astrocyte reactivity and might be involved in the neurotoxic effects induced by P. juliflora consumption.


A Prosopis juliflora é amplamente utilizada na alimentação humana e de várias espécies animais, especialmente bovinos. Quadros de intoxicação por esta planta, nesta espécie, têm sido relatados, principalmente quando a mesma é oferecida como única fonte alimentar, desencadeando uma doença de sintomatologia nervosa. Neste estudo, objetivou-se avaliar os efeitos in vitro da fração de alcalóides totais (F A) extraída das vagens da Prosopis juliflora utilizando cultura primária de astrócitos obtidos do córtex cerebral de ratos como modelo de estudo. A avaliação da atividade mitocondrial pelo teste do MTT demonstrou a citotoxicidade em 30 µg/ ml da FA após 24 h. As concentrações de 0,3 e 3 µg/ ml da FA induziram um aumento da atividade mitocondrial, indicando reatividade celular. Testes imunocitoquimicos para a GFAP, principal proteína de citoesqueleto de astrócitos, revelaram alterações morfológicas nas células após tratamento com 0,3 e 3 µg/ml da FA por 72 h. Tais resultados são consoantes à análise desta proteína por westernblot, quando as culturas foram tratadas com 0,3 e 3 µg/ml da FA por 72 h, demonstrando interferências na regulação da expressão da GFAP. A expressão de vimentina não foi significativamente alterada em nenhuma das concentrações testadas. Estes resultados sugerem que os alcalóides da P.juliflora induzem a reatividade astrocitária, o que pode estar envolvido nos efeitos neurotóxicos providos pelo consumo desta planta.


Assuntos
Astrócitos/citologia , Intoxicação por Plantas/veterinária , Prosopis/efeitos adversos , Prosopis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA