Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366114

RESUMO

Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = -0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = -0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = -0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = -0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = -0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = -1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.

2.
Mol Psychiatry ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419974

RESUMO

The γ-aminobutyric acid (GABA)ergic system is the primary inhibitory neurotransmission system in the mammalian brain. Its dysregulation has been shown in multiple brain conditions, but in Alzheimer's disease (AD) studies have provided contradictory results. Here, we conducted a systematic review with meta-analysis to investigate whether the GABAergic system is altered in AD patients compared to healthy controls (HC), following the PRISMA 2020 Statement. We searched PubMed and Web of Science from database inception to March 18th, 2023 for studies reporting GABA, glutamate decarboxylase (GAD) 65/67, GABAA, GABAB, and GABAC receptors, GABA transporters (GAT) 1-3 and vesicular GAT in the brain, and GABA levels in the cerebrospinal fluid (CSF) and blood. Heterogeneity was estimated using the I2 index, and the risk of bias was assessed with an adapted questionnaire from the Joanna Briggs Institute Critical Appraisal Tools. The search identified 3631 articles, and 48 met the final inclusion criteria (518 HC, mean age 72.2, and 603 AD patients, mean age 75.6). Random-effects meta-analysis [standardized mean difference (SMD)] revealed that AD patients presented lower GABA levels in the brain (SMD = -0.48 [95% CI = -0.7, -0.27], adjusted p value (adj. p) < 0.001) and in the CSF (-0.41 [-0.72, -0.09], adj. p = 0.042), but not in the blood (-0.63 [-1.35, 0.1], adj. p = 0.176). In addition, GAD65/67 (-0.67 [-1.15, -0.2], adj. p = 0.006), GABAA receptor (-0.51 [-0.7, -0.33], adj. p < 0.001), and GABA transporters (-0.51 [-0.92, -0.09], adj. p = 0.016) were lower in the AD brain. Here, we showed a global reduction of GABAergic system components in the brain and lower GABA levels in the CSF of AD patients. Our findings suggest the GABAergic system is vulnerable to AD pathology and should be considered a potential target for developing pharmacological strategies and novel AD biomarkers.

3.
Mol Psychiatry ; 27(11): 4781-4789, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948658

RESUMO

Astrocytes can adopt multiple molecular phenotypes in the brain of Alzheimer's disease (AD) patients. Here, we studied the associations of cerebrospinal fluid (CSF) glial fibrillary acidic protein (GFAP) and chitinase-3-like protein 1 (YKL-40) levels with brain amyloid-ß (Aß) and tau pathologies. We assessed 121 individuals across the aging and AD clinical spectrum with positron emission tomography (PET) brain imaging for Aß ([18F]AZD4694) and tau ([18F]MK-6240), as well as CSF GFAP and YKL-40 measures. We observed that higher CSF GFAP levels were associated with elevated Aß-PET but not tau-PET load. By contrast, higher CSF YKL-40 levels were associated with elevated tau-PET but not Aß-PET burden. Structural equation modeling revealed that CSF GFAP and YKL-40 mediate the effects of Aß and tau, respectively, on hippocampal atrophy, which was further associated with cognitive impairment. Our results suggest the existence of distinct astrocyte biomarker signatures in response to brain Aß and tau accumulation, which may contribute to our understanding of the complex link between reactive astrogliosis heterogeneity and AD progression.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/patologia , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/líquido cefalorraquidiano
4.
Arch Virol ; 168(2): 70, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36658439

RESUMO

Zika virus (ZIKV) is an arbovirus that was responsible for multiple outbreaks from 2007 to 2015. It has been linked to cases of microcephaly in Brazil in 2015, among other neurological disorders. Differences among strains might be the reason for different clinical outcomes of infection. To evaluate this hypothesis, we performed a comparative proteomic analysis of Vero cells infected with the African strain MR766 (ZIKVAFR) and the Brazilian strain 17 SM (ZIKVBR). A total of 550 proteins were identified as differentially expressed in ZIKVAFR- or ZIKVBR-infected cells compared to the control. The main findings included upregulation of immune system pathways (neutrophil degranulation and adaptive/innate immune system) and potential activation of immune-system-related pathways by ZIKVAFR (mTOR, JAK-STAT, NF-κB, and others) compared with the ZIKVBR/control. In addition, phagocytosis by macrophages and engulfment of leukocytes were activated in ZIKVAFR infection. An in vivo analysis using an immunocompetent C57BL/6N mouse model identified interstitial pneumonia with neutrophil infiltration in the lungs only in mice infected with ZIKVBR at 48 hours postinfection, with a significant amount of virus detected. Likewise, only animals infected with ZIKVBR had viral material in the cytoplasm of lung macrophages. These results suggest that activation of the immune system by ZIKVAFR infection may lead to faster viral clearance by immune cells.


Assuntos
Evasão da Resposta Imune , Infecção por Zika virus , Zika virus , Animais , Camundongos , Brasil , Chlorocebus aethiops , Camundongos Endogâmicos C57BL , Proteômica , Células Vero , Zika virus/fisiologia , Infecção por Zika virus/imunologia
5.
Eur J Nucl Med Mol Imaging ; 49(7): 2251-2264, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35122511

RESUMO

PURPOSE: Advances in functional imaging allowed us to visualize brain glucose metabolism in vivo and non-invasively with [18F]fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) imaging. In the past decades, FDG-PET has been instrumental in the understanding of brain function in health and disease. The source of the FDG-PET signal has been attributed to neuronal uptake, with hypometabolism being considered as a direct index of neuronal dysfunction or death. However, other brain cells are also metabolically active, including astrocytes. Based on the astrocyte-neuron lactate shuttle hypothesis, the activation of the glutamate transporter 1 (GLT-1) acts as a trigger for glucose uptake by astrocytes. With this in mind, we investigated glucose utilization changes after pharmacologically downregulating GLT-1 with clozapine (CLO), an anti-psychotic drug. METHODS: Adult male Wistar rats (control, n = 14; CLO, n = 12) received CLO (25/35 mg kg-1) for 6 weeks. CLO effects were evaluated in vivo with FDG-PET and cortical tissue was used to evaluate glutamate uptake and GLT-1 and GLAST levels. CLO treatment effects were also assessed in cortical astrocyte cultures (glucose and glutamate uptake, GLT-1 and GLAST levels) and in cortical neuronal cultures (glucose uptake). RESULTS: CLO markedly reduced in vivo brain glucose metabolism in several brain areas, especially in the cortex. Ex vivo analyses demonstrated decreased cortical glutamate transport along with GLT-1 mRNA and protein downregulation. In astrocyte cultures, CLO decreased GLT-1 density as well as glutamate and glucose uptake. By contrast, in cortical neuronal cultures, CLO did not affect glucose uptake. CONCLUSION: This work provides in vivo demonstration that GLT-1 downregulation induces astrocyte-dependent cortical FDG-PET hypometabolism-mimicking the hypometabolic signature seen in people developing dementia-and adds further evidence that astrocytes are key contributors of the FDG-PET signal.


Assuntos
Astrócitos , Clozapina , Animais , Clozapina/metabolismo , Clozapina/farmacologia , Fluordesoxiglucose F18/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar
6.
Nutr Neurosci ; 25(5): 1066-1077, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33107813

RESUMO

OBJECTIVE: We investigated the influence of dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) on glutamatergic system modulation after a single episode of neonatal seizures and their possible effects on seizure-induced long-lasting behavioral deficits. METHODS: Male Wistar rats receiving an omega-3 diet (n-3) or an n-3 deficient diet (D) from the prenatal period were subjected to a kainate-induced seizure model at P7. Glutamate transporter activity and immunocontents (GLT-1 and GLAST) were assessed in the hippocampus at 12, 24, and 48 h after the seizure episode. Fluorescence intensity for glial cells (GFAP) and neurons (NeuN) was assessed 24 h after seizure in the hippocampus. Behavioral analysis (elevated-plus maze and inhibitory avoidance memory task) was performed at 60 days of age. RESULTS: The D group showed a decrease in glutamate uptake 24 h after seizure. In this group only, the GLT1 content increased at 12 h, followed by a decrease at 24 h. GLAST increased up to 24 h after seizure. GFAP fluorescence was higher, and NeuN fluorescence decreased, in the D group independent of seizures. In adulthood, the D group presented memory deficits independent of seizures, but short-term memory (1.5 h after a training session) was abolished in the D group treated with kainate. SIGNIFICANCE: N-3 PUFA positively influenced the glutamatergic system during seizure and prevented seizure-related memory deficits in adulthood.


Assuntos
Epilepsia , Ácidos Graxos Ômega-3 , Animais , Dieta , Ácidos Graxos Ômega-3/efeitos adversos , Feminino , Ácido Glutâmico , Hipocampo , Ácido Caínico , Masculino , Transtornos da Memória/prevenção & controle , Gravidez , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/prevenção & controle
7.
Pain Pract ; 22(1): 19-27, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33864725

RESUMO

BACKGROUND: Allopurinol is a potent inhibitor of the enzyme xanthine oxidase used in the treatment of hyperuricemia and gout. Because it is well known that purines exert multiple affects on pain transmission, we hypothesized that the inhibition of xanthine oxidase by allopurinol could be a valid strategy to treat pain in humans. This study aimed to compare the analgesic efficacy of oral allopurinol versus placebo as an adjuvant therapy in patients displaying fibromyalgia. METHODS: This randomized, double-blinded, placebo-controlled study included 60 women with the diagnosis of fibromyalgia. Patients were randomly assigned to receive either oral allopurinol 300 mg (n = 31) or placebo (n = 29) twice daily during 30 days. The patients were submitted to evaluation for pain sensitivity, anxiety, depression, and functional status before treatment, and 15 and 30 days thereafter. RESULTS: Oral administration of allopurinol 300 mg twice daily was ineffective in improving pain scores measured by several tools up to 30 days of treatment (P > 0.05). Additionally, no significant effects of allopurinol over anxiety, depressive symptoms, and functional status of fibromyalgia patients were observed in the present study. CONCLUSIONS: Although previous findings indicated that allopurinol could present intrinsic analgesic effects in both animals and humans, this study showed no benefit of the use of oral allopurinol as an adjuvant strategy during 30 days in women displaying fibromyalgia. However, considering previous promising results, new prospective studies are still valid to further investigate allopurinol and more selective purine derivatives in the management of pain syndromes.


Assuntos
Alopurinol , Fibromialgia , Alopurinol/uso terapêutico , Animais , Método Duplo-Cego , Feminino , Fibromialgia/tratamento farmacológico , Supressores da Gota/uso terapêutico , Humanos , Dor/tratamento farmacológico , Estudos Prospectivos , Resultado do Tratamento , Ácido Úrico/uso terapêutico
8.
Semin Cell Dev Biol ; 95: 142-150, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30951895

RESUMO

Astrocytes are a unique and dynamic subtype of glial cells in the central nervous system (CNS). Understanding their biochemical reactions and their influence in the surrounding cells is extremely important in the neuroscience field. They exert important influence in the neurotransmission, ionic homeostasis and also release neuroactive molecules termed gliotransmitters. Additionally, they metabolize, store and release metabolic substrates to meet high brain energy requirements. In this review, we highlight the main biochemical reactions regarding energy metabolism that take place in astrocytes. Special attention is given to synthesis, storage and catabolism of glucose, release of lactate, oxidation of fatty acids, production of ketone bodies, and metabolism of the main neurotransmitters, glutamate and GABA. The recent findings allow proposing these cells as key players controlling the energetic homeostasis in the CNS.


Assuntos
Astrócitos/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Modelos Biológicos , Neurotransmissores/metabolismo , Especificidade por Substrato
9.
Purinergic Signal ; 17(2): 255-271, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33834349

RESUMO

Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.


Assuntos
Encéfalo/fisiopatologia , Guanosina/administração & dosagem , Guanosina/uso terapêutico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/fisiopatologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Administração Intranasal , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Veias Cerebrais/efeitos dos fármacos , Eletrocoagulação , Eletroencefalografia/efeitos dos fármacos , Lateralidade Funcional/efeitos dos fármacos , AVC Isquêmico/complicações , Masculino , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
10.
Neuroimmunomodulation ; 28(4): 229-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34082423

RESUMO

INTRODUCTION: The aim of this case was to investigate the association of the Zika virus infection in utero with the autism spectrum disorder (ASD) as clinical outcome that presented no congenital anomalies. METHODS: ASD was diagnosed in the second year of life by different child neurologists and confirmed by DSM-5 and ASQ. After that, an extensive clinical, epidemiological, and genetic evaluations were performed, with main known ASD causes ruled out. RESULTS: An extensive laboratorial search was done, with normal findings. SNP array identified no pathogenic variants. Normal neuroimaging and EEG findings were also obtained. ZIKV (Zika virus) IgG was positive, while IgM was negative. Other congenital infections were negative. The exome sequencing did not reveal any pathogenic variant in genes related to ASD. CONCLUSION: Accordingly, this report firstly associates ZIKV exposure to ASD.


Assuntos
Transtorno do Espectro Autista , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Criança , Feminino , Humanos , Gravidez , Zika virus/genética , Infecção por Zika virus/complicações
11.
Mol Biol Rep ; 48(2): 1475-1483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33492574

RESUMO

Rutin is an important flavonoid consumed in the daily diet. It is also known as vitamin P and has been extensively investigated due to its pharmacological properties. On the other hand, neuronal death induced by glutamate excitotoxicity is present in several diseases including neurodegenerative diseases. The neuroprotective properties of rutin have been under investigation, although its mechanism of action is still poorly understood. We hypothesized that the mechanisms of neuroprotection of rutin are associated with the increase in glutamate metabolism in astrocytes. This study aimed to evaluate the protective effects of rutin with a focus on the modulation of glutamate detoxification. We used brain organotypic cultures from post-natal Wistar rats (P7-P9) treated with rutin to evaluate neural cell protection and levels of proteins involved in the glutamate metabolism. Moreover, we used cerebral cortex slices from adult Wistar rats to evaluate glutamate uptake. We showed that rutin inhibited the cell death and loss of glutamine synthetase (GS) induced by glutamate that was associated with an increase in glutamate-aspartate transporter (GLAST) in brain organotypic cultures from post-natal Wistar rats. Additionally, it was observed that rutin increased the glutamate uptake in cerebral cortex slices from adult Wistar rats. We conclude that rutin is a neuroprotective agent that prevents glutamate excitotoxicity and thereof suggest that this effect involves the regulation of astrocytic metabolism.


Assuntos
Morte Celular/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Rutina/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Transportador 1 de Aminoácido Excitatório , Glutamato-Amônia Ligase/genética , Ácido Glutâmico/toxicidade , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Neurotoxinas/metabolismo , Neurotoxinas/toxicidade , Ratos , Ratos Wistar
12.
J Anesth ; 35(6): 818-826, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390392

RESUMO

PURPOSE: Allopurinol is a potent inhibitor of the enzyme xanthine oxidase used primarily in the treatment of hyperuricemia and gout. The aim of this study was to compare the analgesic efficacy of preanesthetic allopurinol versus placebo on postoperative pain and anxiety in patients undergoing abdominal hysterectomy. METHODS: This is a prospective, double-blinded, placebo-controlled, randomized clinical trial. We investigated 54 patients scheduled to undergo elective abdominal hysterectomy. Patients were randomly assigned to receive either oral allopurinol 300 mg (n = 27) or placebo (n = 27) the night before and 1 h before surgery. Patients were submitted to evaluation of pain and anxiety before the treatment, for 24 h postoperatively, 30 and 90 days after surgery. Cerebrospinal fluid was collected at the time of the spinal anesthesia to perform the measurement of the central levels of purines. RESULTS: Preoperative administration of allopurinol was effective in reducing postoperative pain 2 h after surgery. Allopurinol caused a reduction of approximately 40% in pain scores measured by the visual analogue pain scale after surgery (p < 0.05). No differences were found between groups in anxiety scores after surgery. There was a significant change in the cerebrospinal fluid concentrations of xanthine and uric acid before surgery (p < 0.01). CONCLUSION: This study showed a short-term benefit of the use of allopurinol as a preanesthetic medication since it was related to a reduction on pain scores 2 h after surgery. The purinergic system is a potential target for new analgesic drugs. New studies investigating more selective purine derivatives in the management of pain should be performed. TRIAL NUMBER REGISTRATION: Brazilian Registry of Clinical Trials-ReBEC #RBR-9pw58p.


Assuntos
Alopurinol , Dor Pós-Operatória , Método Duplo-Cego , Feminino , Humanos , Histerectomia/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/prevenção & controle , Estudos Prospectivos , Xantina Oxidase
13.
J Neurochem ; 155(4): 348-369, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32320074

RESUMO

Amyloid-ß (Aß) dysmetabolism is tightly associated with pathological processes in Alzheimer's disease (AD). Currently, it is thought that, in addition to Aß fibrils that give rise to plaque formation, Aß aggregates into non-fibrillar soluble oligomers (AßOs). Soluble AßOs have been extensively studied for their synaptotoxic and neurotoxic properties. In this review, we discuss physicochemical properties of AßOs and their impact on different brain cell types in AD. Additionally, we summarize three decades of studies with AßOs, providing a compelling bulk of evidence regarding cell-specific mechanisms of toxicity. Cellular models may lead us to a deeper understanding of the detrimental effects of AßOs in neurons and glial cells, putatively shedding light on the development of innovative therapies for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Células Cultivadas , Humanos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia
14.
J Neurovirol ; 26(1): 77-83, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31512145

RESUMO

The recent outbreak of Zika virus (ZIKV) in Brazil and other countries globally demonstrated the relevance of ZIKV studies. During and after this outbreak, there was an intense increase in scientific production on ZIKV infections, especially toward alterations promoted by the infection and related to clinical outcomes. Considering this massive amount of new data, mainly thousands of genes and proteins whose expression is impacted by ZIKV infection, the ZIKA Virus Infection Database (ZIKAVID) was created. ZIKAVID is an online database that comprises all genes or proteins, and associated information, for which expression was experimentally measured and found to be altered after ZIKV infection. The database, available at https://zikavid.org, contains 16,984 entries of gene expression measurements from a total of 7348 genes. It allows users to easily perform searches for different experimental hosts (cell lines, tissues, and animal models), ZIKV strains (African, Asian, and Brazilian), and target molecules (messenger RNA [mRNA] and protein), among others, used in differential expression studies regarding ZIKV infection. In this way, the ZIKAVID will serve as an additional and important resource to improve the characterization of the molecular impact and pathogenesis associated with ZIKV infection.


Assuntos
Bases de Dados Genéticas , Infecção por Zika virus/genética , Zika virus/genética , Animais , Humanos
15.
Vet Anaesth Analg ; 47(6): 740-747, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32800537

RESUMO

OBJECTIVE: Postoperative cognitive dysfunction (POCD) may be related to brain injury. S100B protein and neuron-specific enolase (NSE) have been investigated as potential biochemical markers of neural cell injury in animals and humans. This study aimed to investigate the association between POCD, brain injury and serum concentrations of S100B and NSE after periodontal surgery in aged dogs. STUDY DESIGN: Prospective observational animal study. ANIMALS: A total of 24 male and female dogs undergoing periodontal surgery. METHODS: Dogs were separated into two groups based on age: control group, 10 dogs ≤ 8 years and aged group, 14 dogs > 8 years. Cognitive function was measured preoperatively and on the seventh postoperative day using the Canine Cognitive Dysfunction Rating scale and the Age-Related Cognitive and Affective Disorders scale. S100B protein and NSE serum concentrations were measured before and immediately after the surgery. RESULTS: POCD was not observed after surgery in the present study. Serum concentrations of S100B and NSE were increased postoperatively in the control group but not in the aged group (p = 0.04 and 0.03, respectively). Preoperative S100B serum concentrations were significantly higher in the aged group (p = 0.01). CONCLUSIONS: There was no association between POCD and high concentrations of S100B and NSE in dogs. However, increased postoperative serum concentrations of S100B and NSE were found in the control group after surgery, an effect that may indicate neural damage. CLINICAL RELEVANCE: The results suggest that anesthesia and oral surgery are associated with higher postoperative serum concentrations of S100B and NSE in dogs ≤ 8 years old, which may indicate neural damage. Serum concentrations of S100B were elevated in aged dogs before anesthesia, a finding that might be related to chronic preoperative brain damage.


Assuntos
Anestesia/veterinária , Doenças do Cão/diagnóstico , Fosfopiruvato Hidratase/sangue , Complicações Cognitivas Pós-Operatórias/diagnóstico , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Envelhecimento , Animais , Estudos de Casos e Controles , Doenças do Cão/sangue , Doenças do Cão/enzimologia , Cães , Feminino , Masculino , Complicações Cognitivas Pós-Operatórias/sangue
16.
Eur J Neurosci ; 49(12): 1673-1683, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30667546

RESUMO

Attention deficit and hyperactivity disorder (ADHD) is characterized by impaired levels of hyperactivity, impulsivity, and inattention. Adenosine and endocannabinoid systems tightly interact in the modulation of dopamine signaling, involved in the neurobiology of ADHD. In this study, we evaluated the modulating effects of the cannabinoid and adenosine systems in a tolerance to delay of reward task using the most widely used animal model of ADHD. Spontaneous Hypertensive Rats (SHR) and Wistar-Kyoto rats were treated chronically or acutely with caffeine, a non-selective adenosine receptor antagonist, or acutely with a cannabinoid agonist (WIN55212-2, WIN) or antagonist (AM251). Subsequently, animals were tested in the tolerance to delay of reward task, in which they had to choose between a small, but immediate, or a large, but delayed, reward. Treatment with WIN decreased, whereas treatment with AM251 increased the choices of the large reward, selectively in SHR rats, indicating a CB1 receptor-mediated increase in impulsive behavior. An acute pre-treatment with caffeine blocked WIN effects. Conversely, a chronic treatment with caffeine increased the impulsive phenotype and potentiated the WIN effects. The results indicate that both cannabinoid and adenosine receptors modulate impulsive behavior in SHR: the antagonism of cannabinoid receptors might be effective in reducing impulsive symptoms present in ADHD; in addition, caffeine showed the opposite effects on impulsive behavior depending on the length of treatment. These observations are of particular importance to consider when therapeutic manipulation of CB1 receptors is applied to ADHD patients who consume coffee.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Cafeína/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Psicotrópicos/farmacologia , Animais , Benzoxazinas/farmacologia , Modelos Animais de Doenças , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirazóis/farmacologia , Distribuição Aleatória , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
18.
An Acad Bras Cienc ; 88(3 Suppl): 1735-1742, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556222

RESUMO

In Brazil, scientific performance of researchers is one important criteria for decision-making in grant allocation. In this context, this study aimed to evaluate and compare the profile of 82 seniors' investigators (graded as level 1A-D) which were receiving CNPq (National Council for Scientific and Technological Development) productivity grant in Pharmacology, by analyzing the pattern of citation of their papers and h-index. Total documents, citations (with and without self-citations) and h-index (with and without self-citations) were retrieved from the Scopus database. The results indicated a clear difference among researchers from the higher categories (1A and 1B) in most of the parameters analyzed. However, no noticeable differentiation was found between researchers from grant category 1C and 1D. The results presented here may inform the scientific community and the grant agencies on the profile of PQ 1(A-D) fellows of Pharmacology, and may help to define new differences within CNPq grant categories, and consequently, a better allocation of grants.


Assuntos
Bibliometria , Farmacologia/estatística & dados numéricos , Pesquisadores/classificação , Pesquisadores/estatística & dados numéricos , Apoio à Pesquisa como Assunto/estatística & dados numéricos , Brasil , Humanos
19.
Pestic Biochem Physiol ; 130: 22-30, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27155480

RESUMO

The present study aimed to increase our understanding about the mode of toxic action of organophosphate pesticides in insects by evaluating the biochemical and neurobehavioral characteristics in Nauphoeta cinerea exposed to chlorpyrifos (CPF)-contaminated diet. The insects were exposed for 35 consecutive days to CPF at 0.078, 0.15625, 0.3125 and 0.625µg/g feed. Locomotor behavior was assessed for a 10-min trial in a novel arena and subsequently, biochemical analyses were carried out using the cockroaches' heads. In comparison to control, CPF-exposed cockroaches showed significant decreases in the total distance traveled, body rotation, turn angle and meandering, along with significant increase in the number of falls, time and episodes of immobility. The marked decrease in the exploratory profiles of CPF-exposed cockroaches was confirmed by track plots, whereas occupancy plot analyses showed a progressive dispersion at 0.15625µg/g feed group. Moreover, the heads of CPF-exposed cockroaches showed marked decrease in acetylcholinesterase activity and antioxidant status with concomitant significant elevation in dichlorofluorescein oxidation and lipid peroxidation levels in CPF-treated cockroaches. Gas Chromatography-Mass Spectrometry analyses revealed bioaccumulation of CPF in cockroaches exposed to concentrations above 0.078µg/g feed. The findings from this investigation showed N. cinerea as a value model organism for the risk assessment of environmental organophosphate contamination in insects.


Assuntos
Clorpirifos/farmacologia , Baratas/efeitos dos fármacos , Inseticidas/farmacologia , Acetilcolinesterase/efeitos dos fármacos , Animais , Baratas/metabolismo , Locomoção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
20.
Eur J Anaesthesiol ; 33(9): 681-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27433840

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) may be related to the systemic inflammatory response and an increase in serum markers of brain injury such as S100B protein and neuron-specific enolase (NSE). OBJECTIVE: The study aims to evaluate the association between POCD and serum levels of S100B and NSE after coronary artery bypass grafting surgery (CABG). DESIGN: Prospective observational study. SETTING: Single university teaching hospital. PATIENTS: We investigated 88 patients undergoing CABG. MAIN OUTCOMES MEASURES: Cognitive function was measured preoperatively, and at the 21st and 180th postoperative days (i.e. 6 months after surgery). S100B protein and NSE serum levels were evaluated preoperatively, after induction of anaesthesia, at the end of surgery and at 6 and 24 h after surgery. RESULTS: The incidence of POCD was 26.1% at 21 days after surgery and 22.7% at 6 months after surgery. Increased serum levels of S100B protein and NSE were observed postoperatively and may indicate brain damage. CONCLUSION: Although serum levels of S100B protein and NSE are both significantly increased postoperatively, our findings indicate that serum levels of S100B protein may be more accurate than NSE in the detection of POCD after CABG. TRIAL REGISTRATION: NCT01550159.


Assuntos
Disfunção Cognitiva/sangue , Ponte de Artéria Coronária/efeitos adversos , Fosfopiruvato Hidratase/sangue , Complicações Pós-Operatórias/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Idoso , Biomarcadores/sangue , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Valor Preditivo dos Testes , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA