Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 107(11): 1349-1359, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030407

RESUMO

NEW FINDINGS: What is the central question of this study? How does the 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease model affect the respiratory response in female rats? What effect does ovariectomy have on that response? What is the main finding and its importance? The results suggest a protective effect of ovarian hormones in maintaining normal neuroanatomical integrity of the medullary respiratory nucleus in females. It was observed that ovariectomy alone reduced neurokinin-1 density in the pre-Bötzinger complex and Bötzinger complex, and there was an incremental effect of 6-OHDA and ovariectomy on retrotrapezoid nucleus neurons. ABSTRACT: Emerging evidence indicates that the course of Parkinson's disease (PD) includes autonomic and respiratory deficiencies in addition to the classical motor symptoms. The prevalence of PD is lower in women, and it has been hypothesized that neuroprotection by ovarian hormones can explain this difference. While male PD animal models present changes in the central respiratory control areas, as well as ventilatory parameters under normoxia and hypercapnia, little is known about sex differences regarding respiratory deficits in this disease background. This study aimed to explore the neuroanatomical and functional respiratory changes in intact and ovariectomized (OVX) female rats subjected to chemically induced PD via a bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). The respiratory parameters were evaluated by whole-body plethysmography, and the neuroanatomy was monitored using immunohistochemistry. It was found that dopaminergic neurons in the substantia nigra and neurokinin-1 receptor density in the rostral ventrolateral respiratory group, Bötzinger and pre-Bötzinger complex were reduced in the chemically induced PD animals. Additionally, reduced numbers of Phox2b neurons were only observed in the retrotrapezoid nucleus of PD-OVX rats. Concerning respiratory parameters, in OVX rats, the resting and hypercapnia-induced tidal volume (VT ) is reduced, and ventilation ( V ̇ E ${\dot V_{\rm{E}}}$ ) changes independently of 6-OHDA administration. Notably, there is a reduction in the number of retrotrapezoid nucleus Phox2b neurons and hypercapnia-induced respiratory changes in PD-OVX animals due to a 6-OHDA and OVX interaction. These results suggest a protective effect induced by ovarian hormones in neuroanatomical changes observed in a female experimental PD model.


Assuntos
Doença de Parkinson , Ratos , Feminino , Masculino , Animais , Oxidopamina , Hipercapnia , Ratos Wistar , Hormônios , Modelos Animais de Doenças
2.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182324

RESUMO

BACKGROUND: The relationship between glioblastoma (GBM) and fatty acid metabolism could be the key to elucidate more effective therapeutic targets. 15-lipoxygenase-1 (15-LOX), a linolenic acid and arachidonic acid metabolizing enzyme, induces both pro- and antitumorigenic effects in different cancer types. Its role in glioma activity has not yet been clearly described. The objective of this study was to identify the influence of 15-LOX and its metabolites on glioblastoma cell activity. METHODS: GBM cell lines were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify 15-LOX metabolites. GBM cells treated with 15-LOX metabolites, 13-hydroxyoctadecadeinoic acid (HODE) and 9-HODE, and two 15-LOX inhibitors (luteolin and nordihydroguaiaretic acid) were also examined. Dose response/viability curves, RT-PCRs, flow cytometry, migration assays, and zymograms were performed to analyze GBM growth, migration, and invasion. RESULTS: Higher quantities of 13-HODE were observed in five GBM cell lines compared to other lipids analyzed. Both 13-HODE and 9-HODE increased cell count in U87MG. 15-LOX inhibition decreased migration and increased cell cycle arrest in the G2/M phase. CONCLUSION: 15-LOX and its linoleic acid (LA)-derived metabolites exercise a protumorigenic influence on GBM cells in vitro. Elevated endogenous levels of 13-HODE called attention to the relationship between linoleic acid metabolism and GBM cell activity.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Inibidores de Lipoxigenase/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Ácido Linoleico/metabolismo , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos Conjugados/metabolismo
3.
Prostaglandins Leukot Essent Fatty Acids ; 202: 102622, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954932

RESUMO

Epoxyeicosatrienoic acids (EpETrEs) are bioactive lipid mediators of arachidonic acid cytochrome P450 oxidation. In vivo, the free (unbound) form of EpETrEs regulate multiple processes including blood flow, angiogenesis and inflammation resolution. Free EpETrEs are thought to rapidly degrade via soluble epoxide hydrolase (sEH); yet, in many tissues, the majority of EpETrEs are esterified to complex lipids (e.g. phospholipids) suggesting that esterification may play a major role in regulating free, bioactive EpETrE levels. This hypothesis was tested by quantifying the metabolism of intraperitoneally injected free d11-11(12)-Epoxyeicosatrienoic acid (d11-11(12)-EpETrE) in male and female rats. Plasma and tissues (liver, adipose and brain) were obtained 3 to 4 min later and assayed for d11-11(12)-EpETrE and its sEH metabolite, d11-11,12-dihydroxyeicosatrienoic acid (d11-11,12-diHETrE) in both the free and esterified lipid fractions. In both males and females, the majority of injected tracer was recovered in liver followed by plasma and adipose. No tracer was detected in the brain, indicating that brain levels are maintained by endogenous synthesis from precursor fatty acids. In plasma, liver, and adipose, the majority (>54 %) of d11-11(12)-EpETrE was found esterified to phospholipids or neutral lipids (triglycerides and cholesteryl esters). sEH-derived d11-11,12-diHETrE was not detected in plasma or tissues, suggesting negligible conversion within the 3-4 min period post tracer injection. This study shows that esterification is the main pathway regulating free 11(12)-EpETrE levels in vivo.

4.
Front Immunol ; 14: 1193535, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035105

RESUMO

Neuropilin-1 (Nrp1), a transmembrane protein expressed on CD4+ T cells, is mostly studied in the context of regulatory T cell (Treg) function. More recently, there is increasing evidence that Nrp1 is also highly expressed on activated effector T cells and that increases in these Nrp1-expressing CD4+ T cells correspond with immunopathology across several T cell-dependent disease models. Thus, Nrp1 may be implicated in the identification and function of immunopathologic T cells. Nrp1 downregulation in CD4+ T cells is one of the strongest transcriptional changes in response to immunoregulatory compounds that act though the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. To better understand the link between AhR and Nrp1 expression on CD4+ T cells, Nrp1 expression was assessed in vivo and in vitro following AhR ligand treatment. In the current study, we identified that the percentage of Nrp1 expressing CD4+ T cells increases over the course of activation and proliferation in vivo. The actively dividing Nrp1+Foxp3- cells express the classic effector phenotype of CD44hiCD45RBlo, and the increase in Nrp1+Foxp3- cells is prevented by AhR activation. In contrast, Nrp1 expression is not modulated by AhR activation in non-proliferating CD4+ T cells. The downregulation of Nrp1 on CD4+ T cells was recapitulated in vitro in cells isolated from C57BL/6 and NOD (non-obese diabetic) mice. CD4+Foxp3- cells expressing CD25, stimulated with IL-2, or differentiated into Th1 cells, were particularly sensitive to AhR-mediated inhibition of Nrp1 upregulation. IL-2 was necessary for AhR-dependent downregulation of Nrp1 expression both in vitro and in vivo. Collectively, the data demonstrate that Nrp1 is a CD4+ T cell activation marker and that regulation of Nrp1 could be a previously undescribed mechanism by which AhR ligands modulate effector CD4+ T cell responses.


Assuntos
Interleucina-2 , Neuropilina-1 , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Interleucina-2/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Neuropilina-1/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Linfócitos T Reguladores/metabolismo , Regulação para Cima
5.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808764

RESUMO

Neuropilin-1 (Nrp1), a transmembrane protein expressed on CD4 + T cells, is mostly studied in the context of regulatory T cell (Treg) function. More recently, there is increasing evidence that Nrp1 is also highly expressed on activated effector T cells and that increases in these Nrp1-expressing CD4 + T cells correspond with immunopathology across several T cell-dependent disease models. Thus, Nrp1 may be implicated in the identification and function of immunopathologic T cells. Nrp1 downregulation in CD4 + T cells is one of the strongest transcriptional changes in response to immunoregulatory compounds that act though the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor. To better understand the link between AhR and Nrp1 expression on CD4 + T cells, Nrp1 expression was assessed in vivo and in vitro following AhR ligand treatment. In the current study, we identified that the percentage of Nrp1 expressing CD4 + T cells increases over the course of activation and proliferation in vivo . The actively dividing Nrp1 + Foxp3 - cells express the classic effector phenotype of CD44 hi CD45RB lo , and the increase in Nrp1 + Foxp3 - cells is prevented by AhR activation. In contrast, Nrp1 expression is not modulated by AhR activation in non-proliferating CD4 + T cells. The downregulation of Nrp1 on CD4 + T cells was recapitulated in vitro in cells isolated from C57BL/6 and NOD (non-obese diabetic) mice. CD4 + Foxp3 - cells expressing CD25, stimulated with IL-2, or differentiated into Th1 cells, were particularly sensitive to AhR-mediated inhibition of Nrp1 upregulation. IL-2 was necessary for AhR-dependent downregulation of Nrp1 expression both in vitro and in vivo . Collectively, the data demonstrate that Nrp1 is a CD4 + T cell activation marker and that regulation of Nrp1 could be a previously undescribed mechanism by which AhR ligands modulate effector CD4 + T cell responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA