Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Entomol ; 61(3): 808-814, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38381594

RESUMO

Malaria vector surveillance tools often incorporate features of hosts that are attractive to blood-seeking females. The recently developed host decoy trap (HDT) combines visual, thermal, and olfactory stimuli associated with human hosts and has shown great efficacy in terms of collecting malaria vectors. Synthetic odors and yeast-produced carbon dioxide (CO2) could prove useful by mimicking the human odors currently used in HDTs and provide standardized and easy-to-use olfactory attractants. The objective of this study was to test the attractiveness of various olfactory attractant cues in HDTs to capture malaria vectors. We compared 4 different odor treatments in outdoor field settings in southern Benin and western Burkina Faso: the standard HDT using a human, HDT with yeast-produced CO2, HDT with an artificial odor blend, and HDT with yeast-produced CO2 plus artificial odor blend. In both experimental sites, the standard HDT that incorporated a real human produced the greatest catch of Anopheles gambiae s.l (Diptera: Culicidae). The alternatives tested were still effective at collecting target vector species, although the most effective included CO2, either alone (Benin) or in combination with synthetic odor (Burkina Faso). The trap using synthetic human odor alone caught the fewest An. gambiae s.l. compared to the other baited traps. Both Anopheles coluzzii and Anopheles gambiae were caught by each trap, with a predominance of An. coluzzii. Synthetic baits could, therefore, represent a more standardized and easier-to-deploy approach than using real human odor baits for a robust vector monitoring strategy.


Assuntos
Anopheles , Controle de Mosquitos , Mosquitos Vetores , Odorantes , Animais , Anopheles/fisiologia , Burkina Faso , Mosquitos Vetores/fisiologia , Controle de Mosquitos/métodos , Feminino , Humanos , Benin , Malária/transmissão , Malária/prevenção & controle , Dióxido de Carbono
2.
Parasitol Int ; 89: 102590, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35472441

RESUMO

Plasmodium falciparum and Plasmodium malariae infections are prevalent in malaria-endemic countries. However, very little is known about their interactions especially the effect of P. malariae on P. falciparum genetic diversity. This study aimed to assess P. falciparum genetic diversity in P. falciparum and mixed infection P. falciparum/P. malariae isolates among the asymptomatic populations in Southern Benin. Two hundred and fifty blood samples (125 of P. falciparum and 125 P. falciparum/P. malariae isolates) were analysed by a nested PCR amplification of msp1 and msp2 genes. The R033 allelic family was the most represented for the msp1 gene in mono and mixed infection isolates (99.2% vs 86.4%), while the K1 family had the lowest frequency (38.3% vs 20.4%). However, with the msp2 gene, the two allelic families displayed similar frequencies in P. falciparum isolates while the 3D7 allelic family was more represented in P. falciparum/P. malariae isolates (88.7%). Polyclonal infections were also lower (62.9%) in P. falciparum/P. malariae isolates (p < 0.05). Overall, 96 individual alleles were identified (47 for msp1 and 49 for msp2) in P. falciparum isolates while a total of 50 individual alleles were identified (23 for msp1 and 27 for msp2) in P. falciparum/P. malariae isolates. The Multiplicity of Infection (MOI) was lower in P. falciparum/P. malariae isolates (p < 0.05). This study revealed a lower genetic diversity of P. falciparum in P. falciparum/P. malariae isolates using msp1 and msp2 genes among the asymptomatic population in Southern Benin.


Assuntos
Coinfecção , Malária Falciparum , Malária , Alelos , Antígenos de Protozoários/genética , Benin/epidemiologia , Coinfecção/epidemiologia , Demência Frontotemporal , Variação Genética , Genótipo , Humanos , Malária/genética , Malária Falciparum/epidemiologia , Proteína 1 de Superfície de Merozoito/genética , Distrofia Muscular do Cíngulo dos Membros , Miosite de Corpos de Inclusão , Osteíte Deformante , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA