Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(13): 3111-3129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38323926

RESUMO

Aquaporin-3 (AQP3) is a membrane channel with dual aquaglyceroporin/peroxiporin activity, facilitating the diffusion of water, glycerol and H2O2 across cell membranes. AQP3 shows aberrant expression in melanoma and its role in cell adhesion, migration and proliferation is well described. Gold compounds were shown to modulate AQP3 activity with reduced associated toxicity, making them promising molecules for cancer therapy. In this study, we validated the phenotype resulting from AQP3-silencing of two melanoma cell lines, MNT-1 and A375, which resulted in decreased H2O2 permeability. Subsequently, the AQP3 inhibitory effect of a new series of organogold compounds derived from Auphen, a potent AQP3 inhibitor, was first evaluated in red blood cells (RBCs) that highly express AQP3, and then in HEK-293T cells with AQP3 overexpression to ascertain the compounds' specificity. The first screening in RBCs unveiled two organogold compounds as promising blockers of AQP3 permeability. Moderate reduction of glycerol permeability but drastic inhibition of H2O2 permeability was detected for some of the gold derivatives in both AQP3-overexpressing cells and human melanoma cell lines. Additionally, all compounds were effective in impairing cell adhesion, proliferation and migration, although in a cell type-dependent manner. In conclusion, our data show that AQP3 peroxiporin activity is crucial for melanoma progression and highlight organogold compounds as promising AQP3 inhibitors with implications in melanoma cell adhesion, proliferation and migration, unveiling their potential as anticancer drugs against AQP3-overexpressing tumours. KEY POINTS: AQP3 affects cellular redox balance. Gold compounds inhibit AQP3 permeability in melanoma cells. AQP3 is involved in cell adhesion, proliferation and migration of melanoma. Blockage of AQP3 peroxiporin activity impairs melanoma cell migration. Gold compounds are potential anticancer drug leads for AQP3-overexpressing cancers.


Assuntos
Aquaporina 3 , Adesão Celular , Movimento Celular , Proliferação de Células , Melanoma , Aquaporina 3/metabolismo , Aquaporina 3/genética , Humanos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células HEK293 , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia
2.
Cell Mol Life Sci ; 79(12): 592, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378343

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is crucial for fluid homeodynamics throughout the male reproductive tract. Previous evidence shed light on a potential molecular partnership between this channel and aquaporins (AQPs). Herein, we explore the role of CFTR on AQPs-mediated glycerol permeability in mouse Sertoli cells (mSCs). We were able to identify the expression of CFTR, AQP3, AQP7, and AQP9 in mSCs by RT-PCR, Western blot, and immunofluorescence techniques. Cells were then treated with CFTRinh-172, a specific CFTR inhibitor, and its glycerol permeability was evaluated by stopped-flow light scattering. We observed that CFTR inhibition decreased glycerol permeability in mSCs by 30.6% when compared to the control group. A DUOLINK proximity ligation assay was used to evaluate the endogenous protein-protein interactions between CFTR and the various aquaglyceroporins we identified. We positively detected that CFTR is in close proximity with AQP3, AQP7, and AQP9 and that, through a possible physical interaction, CFTR can modulate AQP-mediated glycerol permeability in mSCs. As glycerol is essential for the control of the blood-testis barrier and elevated concentration in testis results in the disruption of spermatogenesis, we suggest that the malfunction of CFTR and the consequent alteration in glycerol permeability is a potential link between male infertility and cystic fibrosis.


Assuntos
Aquaporinas , Glicerol , Animais , Masculino , Camundongos , Aquaporinas/genética , Aquaporinas/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Glicerol/metabolismo , Permeabilidade , Células de Sertoli/metabolismo
3.
Adv Exp Med Biol ; 1398: 289-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36717502

RESUMO

Obesity is one of the most important metabolic disorders of this century and is associated with a cluster of the most dangerous cardiovascular disease risk factors, such as insulin resistance and diabetes, dyslipidemia, and hypertension, collectively named Metabolic Syndrome. The role of aquaporins (AQP) in glycerol metabolism facilitating glycerol release from the adipose tissue and distribution to various tissues and organs unveils these membrane channels as important players in lipid balance and energy homeostasis and points to their involvement in a variety of pathophysiological mechanisms including insulin resistance, obesity, and diabetes. This review summarizes the physiologic role of aquaglyceroporins in glycerol metabolism and lipid homeostasis, describing their specific tissue distribution, involvement in glycerol balance, and implication in obesity and fat-related metabolic complications. The development of specify pharmacologic modulators able to regulate aquaglyceroporins expression and function, in particular AQP7 in adipose tissue, might constitute a novel approach for controlling obesity and other metabolic disorders.


Assuntos
Aquagliceroporinas , Aquaporinas , Resistência à Insulina , Doenças Metabólicas , Obesidade , Humanos , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Glicerol/metabolismo , Lipídeos , Obesidade/genética , Obesidade/metabolismo
4.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983077

RESUMO

The natural polyphenolic compound Rottlerin (RoT) showed anticancer properties in a variety of human cancers through the inhibition of several target molecules implicated in tumorigenesis, revealing its potential as an anticancer agent. Aquaporins (AQPs) are found overexpressed in different types of cancers and have recently emerged as promising pharmacological targets. Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a key role in cancer and metastasis. Here, we report the ability of RoT to inhibit human AQP3 activity with an IC50 in the micromolar range (22.8 ± 5.82 µM for water and 6.7 ± 2.97 µM for glycerol permeability inhibition). Moreover, we have used molecular docking and molecular dynamics simulations to understand the structural determinants of RoT that explain its ability to inhibit AQP3. Our results show that RoT blocks AQP3-glycerol permeation by establishing strong and stable interactions at the extracellular region of AQP3 pores interacting with residues essential for glycerol permeation. Altogether, our multidisciplinary approach unveiled RoT as an anticancer drug against tumors where AQP3 is highly expressed providing new information to aquaporin research that may boost future drug design.


Assuntos
Aquaporina 3 , Aquaporinas , Humanos , Aquaporina 3/química , Simulação de Acoplamento Molecular , Glicerol/química , Aquaporinas/química , Água/metabolismo
5.
Int J Mol Sci ; 24(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175840

RESUMO

Aquaporin 3 (AQP3) is a peroxiporin, a membrane protein that channels hydrogen peroxide in addition to water and glycerol. AQP3 expression also correlates with tumor progression and malignancy and is, therefore, a potential target in breast cancer therapy. In addition, epithelial growth factor receptor (EGFR) plays an important role in breast cancer. Therefore, we investigated whether disruption of the lipid raft harboring EGFR could affect AQP3 expression, and conversely, whether AQP3 silencing would affect the EGFR/phosphoinositide-3-kinase (PI3K)/Protein kinase B (PKB or Akt) signaling pathway in breast cancer cell lines with different malignant capacities. We evaluated H2O2 uptake, cell migratory capacity, and expression of PI3K, pAkt/Akt in three breast cancer cell lines, MCF7, SkBr3, and SUM159PT, and in the nontumorigenic breast epithelial cell line MCF10A. Our results show different responses between the tested cell lines, especially when compared to the nontumorigenic cell line. Neither lipid raft disruption nor EGF stimuli had an effect on PI3K/Akt pathway in MCF10A cell line. AQP3-silencing in SkBr3 and SUM159PT showed that AQP3 can modulate PI3K/Akt activation in these cells. Interestingly, SUM159PT cells increase nuclear factor-E2-related factor 2 (NRF2) in response to lipid raft disruption and EGF stimuli, suggesting an oxidative-dependent response to these treatments. These results suggest that in breast cancer cell lines, AQP3 is not directly related to PI3K/Akt pathway but rather in a cell-line-dependent manner.


Assuntos
Aquaporina 3 , Neoplasias da Mama , Proteínas Proto-Oncogênicas c-akt , Feminino , Humanos , Aquaporina 3/genética , Aquaporina 3/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834823

RESUMO

Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white-like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) (n = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors Pparg2, Mogat2 and Dgat1. AQP7 was detected in BAT capillary endothelial cells and brown adipocytes, and its expression was upregulated by DIO. Interestingly, AQP7 gene and protein expressions were downregulated after cold exposure (4 °C) for 1 week or one month after sleeve gastrectomy in parallel to the improvement of BAT whitening. Moreover, Aqp7 mRNA expression was positively associated with transcripts of the lipogenic factors Pparg2, Mogat2 and Dgat1 and regulated by lipogenic (ghrelin) and lipolytic (isoproterenol and leptin) signals. Together, the upregulation of AQP7 in DIO might contribute to glycerol influx used for triacylglycerol synthesis in brown adipocytes, and hence, BAT whitening. This process is reversible by cold exposure and bariatric surgery, thereby suggesting the potential of targeting BAT AQP7 as an anti-obesity therapy.


Assuntos
Aquaporinas , Cirurgia Bariátrica , Animais , Masculino , Ratos , Tecido Adiposo Marrom/metabolismo , Aquaporinas/metabolismo , Células Endoteliais/metabolismo , Glicerol/metabolismo , Obesidade/metabolismo , Ratos Wistar
7.
Cell Mol Life Sci ; 78(6): 3073-3085, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33231721

RESUMO

Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1ß, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1ß release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.


Assuntos
Aquaporina 3/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aquaporina 3/antagonistas & inibidores , Aquaporina 3/genética , Caspase 1/deficiência , Caspase 1/genética , Caspase 1/metabolismo , Linhagem Celular , Citocinas/metabolismo , Glicerol/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Nigericina/farmacologia , Compostos Organoáuricos/química , Compostos Organoáuricos/metabolismo , Potássio/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069293

RESUMO

The gonadal steroids, including androgens, estrogens and progestogens, are involved in the control of body fat distribution in humans. Nevertheless, not only the size and localization of the fat depots depend on the sex steroids levels, but they can also highly affect the functioning of adipose tissue. Namely, the gonadocorticoids can directly influence insulin signaling, lipid metabolism, fatty acid uptake and adipokine production. They may also alter energy balance and glucose homeostasis in adipocytes in an indirect way, e.g., by changing the expression level of aquaglyceroporins. This work presents the recent advances in understanding the molecular mechanism of how the gonadal steroids influence the functioning of adipose tissue leading to a set of detrimental metabolic consequences. Special attention is given here to highlighting the sexual dimorphism of adipocyte functioning in terms of health and disease. Particularly, we discuss the molecular background of metabolic disturbances occurring in consequence of hormonal imbalance which is characteristic of some common endocrinopathies such as the polycystic ovary syndrome. From this perspective, we highlight the potential drug targets and the active substances which can be used in personalized sex-specific management of metabolic diseases, in accord with the patient's hormonal status.


Assuntos
Tecido Adiposo/fisiologia , Doenças Metabólicas/metabolismo , Esteroides/metabolismo , Adipócitos/metabolismo , Animais , Aquaporinas/metabolismo , Distribuição da Gordura Corporal , Feminino , Hormônios Esteroides Gonadais/fisiologia , Humanos , Resistência à Insulina/fisiologia , Lipogênese/fisiologia , Masculino , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/metabolismo , Fatores Sexuais , Esteroides/fisiologia
9.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673336

RESUMO

The mammalian immune system senses foreign antigens by mechanisms that involve the interplay of various kinds of immune cells, culminating in inflammation resolution and tissue clearance. The ability of the immune cells to communicate (via chemokines) and to shift shape for migration, phagocytosis or antigen uptake is mainly supported by critical proteins such as aquaporins (AQPs) that regulate water fluid homeostasis and volume changes. AQPs are protein channels that facilitate water and small uncharged molecules' (such as glycerol or hydrogen peroxide) diffusion through membranes. A number of AQP isoforms were found upregulated in inflammatory conditions and are considered essential for the migration and survival of immune cells. The present review updates information on AQPs' involvement in immunity and inflammatory processes, highlighting their role as crucial players and promising targets for drug discovery.


Assuntos
Aquaporinas/imunologia , Movimento Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Fagocitose/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/imunologia , Movimento Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia
10.
J Exp Bot ; 71(21): 6789-6798, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32584998

RESUMO

Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses, and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated >0.2% Si (DW) in leaves when irrigated with 1.5 mM Si for 1 month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, or on the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and whether grapevine can benefit from Si fertilization.


Assuntos
Aquaporinas , Vitis , Aquaporinas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Vitis/genética , Vitis/metabolismo
11.
Arch Biochem Biophys ; 679: 108222, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816311

RESUMO

Aquaporins (AQPs) are a family of transmembrane channel proteins responsible for the transport of water and small uncharged molecules. Thirteen distinct isoforms of AQPs have been identified in mammals (AQP0-12). Throughout the male reproductive tract, AQPs greatly enhance water transport across all biological barriers, providing a constant and expeditious movement of water and playing an active role in the regulation of water and ion homeostasis. This regulation of fluids is particularly important in the male reproductive tract, where proper fluid composition is directly linked with a healthy and competent spermatozoa production. For instance, in the testis, fluid regulation is essential for spermatogenesis and posterior spermatozoa transport into the epididymal ducts, while maintaining proper ionic conditions for their maturation and storage. Alterations in the expression pattern of AQPs or their dysfunction is linked with male subfertility/infertility. Thus, AQPs are important for male reproductive health. In this review, we will discuss the most recent data on the expression and function of the AQPs isoforms in the human, mouse and rat male reproductive tract. In addition, the regulation of AQPs expression and dysfunction linked with male infertility will be discussed.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica , Infertilidade/genética , Infertilidade/metabolismo , Animais , Humanos , Infertilidade/fisiopatologia , Masculino , Reprodução
12.
Arch Biochem Biophys ; 691: 108481, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32735865

RESUMO

Aquaporins (AQPs) facilitate water and glycerol movement across membranes. AQP7 is the main aquaglyceroporin in pancreatic ß-cells and was proposed to play a role in insulin exocytosis. Although AQP7-null mice display adult-onset obesity, impaired insulin secretion and insulin resistance, AQP7 loss-of-function homozygous mutations in humans do not correlate with obesity nor type-2 diabetes. In addition, AQP12 is upregulated in pancreatitis. However, the implication of this isoform in endocrine pancreas inflammation is still unclear. Here, we investigated AQP7 and AQP12 involvement in cellular and inflammatory processes using RIN-m5F beta cells, a model widely used for their high insulin secretion. AQP7 and AQP12 expression were directly associated with cell proliferation, adhesion and migration. While tumor necrosis factor-alpha (TNFα)-induced inflammation impaired AQP7 expression and drastically reduced insulin secretion, lipopolysaccharides (LPS) prompted AQP7 upregulation, and both TNFα and LPS upregulated AQP12. Importantly, cells overexpressing AQP12 are more resistant to inflammation, revealing lower levels of proinflammatory markers. Altogether, these data document AQP7 involvement in insulin secretion and AQP12 implication in inflammation, highlighting their fundamental role in pancreatic ß-cell function.


Assuntos
Aquaporinas/metabolismo , Inflamação/metabolismo , Células Secretoras de Insulina/metabolismo , Fenótipo , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação para Baixo/efeitos dos fármacos , Glicerol/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Água/metabolismo
13.
Int J Mol Sci ; 21(2)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963923

RESUMO

Plant Nodulin 26-like Intrinsic Proteins (NIPs) are multifunctional membrane channels of the Major Intrinsic Protein (MIP) family. Unlike other homologs, they have low intrinsic water permeability. NIPs possess diverse substrate selectivity, ranging from water to glycerol and to other small solutes, depending on the group-specific amino acid composition at aromatic/Arg (ar/R) constriction. We cloned three NIPs (NIP1;1, NIP5;1, and NIP6;1) from grapevine (cv. Touriga Nacional). Their expression in the membrane of aqy-null Saccharomyces cerevisiae enabled their functional characterization for water and glycerol transport through stopped-flow spectroscopy. VvTnNIP1;1 demonstrated high water as well as glycerol permeability, whereas VvTnNIP6;1 was impermeable to water but presented high glycerol permeability. Their transport activities were declined by cytosolic acidification, implying that internal-pH can regulate NIPs gating. Furthermore, an extension of C-terminal in VvTnNIP6;1M homolog, led to improved channel activity, suggesting that NIPs gating is putatively regulated by C-terminal. Yeast growth assays in the presence of diverse substrates suggest that the transmembrane flux of metalloids (As, B, and Se) and the heavy metal (Cd) are facilitated through grapevine NIPs. This is the first molecular and functional characterization of grapevine NIPs, providing crucial insights into understanding their role for uptake and translocation of small solutes, and extrusion of toxic compounds in grapevine.


Assuntos
Aquaporinas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vitis/metabolismo , Clonagem Molecular , Glicerol/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/química , Metaloides/química , Família Multigênica , Permeabilidade , Proteínas de Plantas/química , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vitis/genética , Água/metabolismo
14.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933135

RESUMO

Nodulin 26-like intrinsic proteins (NIPs) of the plant aquaporin family majorly facilitate the transport of physiologically relevant solutes. The present study intended to investigate how substrate selectivity in grapevine NIPs is influenced by the aromatic/arginine (ar/R) selectivity filter within the pore and the possible underlying mechanisms. A mutational approach was used to interchange the ar/R residues between grapevine NIPs (VvTnNIP1;1 with VvTnNIP6;1, and VvTnNIP2;1 with VvTnNIP5;1). Their functional characterization by stopped-flow spectroscopy in Saccharomyces cerevisiae revealed that mutations in residues of H2/H5 helices in VvTnNIP1;1 and VvTnNIP6;1 caused a general decline in membrane glycerol permeability but did not impart the expected substrate conductivity in the mutants. This result suggests that ar/R filter substitution could alter the NIP channel activity, but it was not sufficient to interchange their substrate preferences. Further, homology modeling analyses evidenced that variations in the pore radius combined with the differences in the channel's physicochemical properties (hydrophilicity/hydrophobicity) may drive substrate selectivity. Furthermore, yeast growth assays showed that H5 residue substitution alleviated the sensitivity of VvTnNIP2;1 and VvTnNIP5;1 to As, B, and Se, implying importance of H5 sequence for substrate selection. These results contribute to the knowledge of the overall determinants of substrate selectivity in NIPs.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Sequência de Aminoácidos , Aquaporinas/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Glicerol/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/genética , Mutação/genética , Permeabilidade , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Vitis/genética
15.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963489

RESUMO

Browning of white adipocytes has been proposed as a powerful strategy to overcome metabolic complications, since brown adipocytes are more catabolic, expending energy as a heat form. However, the biological pathways involved in the browning process are still unclear. Aquaglyceroporins are a sub-class of aquaporin water channels that also permeate glycerol and are involved in body energy homeostasis. In the adipose tissue, aquaporin-7 (AQP7) is the most representative isoform, being crucial for white adipocyte fully differentiation and glycerol metabolism. The altered expression of AQP7 is involved in the onset of obesity and metabolic disorders. Herein, we investigated if aquaglyceroporins are implicated in beige adipocyte differentiation, similar to white cells. Thus, we optimized a protocol of murine 3T3-L1 preadipocytes browning that displayed increased beige and decreased white adipose tissue features at both gene and protein levels and evaluated aquaporin expression patterns along the differentiation process together with cellular lipid content. Our results revealed that AQP7 and aquaporin-9 (AQP9) expression was downregulated throughout beige adipocyte differentiation compared to white differentiation, which may be related to the beige physiological role of heat production from oxidative metabolism, contrasting with the anabolic/catabolic lipid metabolism requiring glycerol gateways occurring in white adipose cells.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Aquagliceroporinas/metabolismo , Obesidade/fisiopatologia , Células 3T3-L1 , Adipócitos Bege/citologia , Tecido Adiposo Branco/citologia , Animais , Diferenciação Celular , Camundongos
16.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344729

RESUMO

The involvement of aquaporins in rain-induced sweet cherry (Prunus avium L.) fruit cracking is an important research topic with potential agricultural applications. In the present study, we performed the functional characterization of PaPIP1;4, the most expressed aquaporin in sweet cherry fruit. Field experiments focused on the pre-harvest exogenous application to sweet cherry trees, cultivar Skeena, with a solution of 0.5% CaCl2, which is the most common treatment to prevent cracking. Results show that PaPIP1;4 was mostly expressed in the fruit peduncle, but its steady-state transcript levels were higher in fruits from CaCl2-treated plants than in controls. The transient expression of PaPIP1;4-GFP in tobacco epidermal cells and the overexpression of PaPIP1;4 in YSH1172 yeast mutation showed that PaPIP1;4 is a plasma membrane protein able to transport water and hydrogen peroxide. In this study, we characterized for the first time a plasma membrane sweet cherry aquaporin able to transport water and H2O2 that is upregulated by the pre-harvest exogenous application of CaCl2 supplements.


Assuntos
Aquaporinas/genética , Aquaporinas/metabolismo , Cálcio/metabolismo , Frutas/metabolismo , Prunus avium/fisiologia , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional/métodos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
17.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252345

RESUMO

Polyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.


Assuntos
Aquaporina 3/antagonistas & inibidores , Compostos de Tungstênio/farmacologia , Animais , Aquaporina 3/química , Aquaporina 3/genética , Aquaporina 3/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicerol/metabolismo , Humanos , Melanoma , Estrutura Molecular , Compostos de Tungstênio/química , Água/metabolismo
18.
Inorg Chem ; 58(3): 2140-2148, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30645101

RESUMO

Following our recent reports on the inhibition of the water and glycerol channel aquaglyceroporin-3 (AQP3) by the coordination complex [AuIII(1,10-phenanthroline)Cl2] (Auphen), a series of six new Au(III) complexes featuring substituted 1,10-phenanthroline ligands (1-6) have been synthesized and characterized. The speciation of the compounds studied in buffered solution by UV-visible spectrophotometry showed that most of the complexes remain stable for several hours. Quantum mechanics (QM) studies of the hydrolysis processes of the compounds suggest that they are thermodynamically less prone to exchange the chlorido ligands with H2O or OH- in comparison to Au(III) bipyridyl complexes. Preliminary data on the antiproliferative activity against A549 human lung cancer cells indicate that the compounds are able to inhibit cell proliferation in vitro. Stopped-flow spectroscopy showed that these complexes potently inhibit glycerol permeation in human red blood cells (hRBC) through AQP3 blockage. The QM investigation of the ligand exchange with methanethiol, used as a model of Cys40 of AQP3, was carried out for some derivatives and showed that the affinity of the compounds' binding for thiols is higher in comparison to the Aubipy complex ([AuIII(bipy)Cl2]PF6, bipy = 2,2'-bipyridine). In addition, both noncovalent and coordinative binding of complex 3 ( [AuIII(5-chloro-1,10-phenanthroline)Cl2]PF6) to the protein channel has been investigated in comparison to the benchmark Auphen and Aubipy using a computational workflow, including QM, molecular dynamics (MD), and quantum mechanics/molecular mechanics (QM/MM) approaches. Finally, atoms in molecules (AIM) and natural bond orbital (NBO) analyses corroborate the MD predictions, providing quantification of the noncoordinative interactions between the compounds and AQP3. AQP3 inhibition is the result of protein conformational changes, upon coordinative gold binding, which induce pore closure. The importance of noncoordinative adducts in modulating the AQP3 inhibition properties of the investigated Au(III) compounds has been elucidated, and these interactions should be further considered in the future design of isoform-selective AQP inhibitors.

19.
Cell Mol Life Sci ; 75(11): 1973-1988, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464285

RESUMO

The metabolic syndrome (MetS) includes a group of medical conditions such as insulin resistance (IR), dyslipidemia and hypertension, all associated with an increased risk for cardiovascular disease. Increased visceral and ectopic fat deposition are also key features in the development of IR and MetS, with pathophysiological sequels on adipose tissue, liver and muscle. The recent recognition of aquaporins (AQPs) involvement in adipose tissue homeostasis has opened new perspectives for research in this field. The members of the aquaglyceroporin subfamily are specific glycerol channels implicated in energy metabolism by facilitating glycerol outflow from adipose tissue and its systemic distribution and uptake by liver and muscle, unveiling these membrane channels as key players in lipid balance and energy homeostasis. Being involved in a variety of pathophysiological mechanisms including IR and obesity, AQPs are considered promising drug targets that may prompt novel therapeutic approaches for metabolic disorders such as MetS. This review addresses the interplay between adipose tissue, liver and muscle, which is the basis of the metabolic syndrome, and highlights the involvement of aquaglyceroporins in obesity and related pathologies and how their regulation in different organs contributes to the features of the metabolic syndrome.


Assuntos
Aquaporinas/metabolismo , Síndrome Metabólica/metabolismo , Adipocinas/análise , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Aquaporinas/análise , Metabolismo Energético , Gluconeogênese , Glucose/metabolismo , Glicerol/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Fígado/patologia , Síndrome Metabólica/patologia , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
20.
Br J Nutr ; 120(10): 1098-1106, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30401002

RESUMO

EPA (20 : 5n-3) and DHA (22 : 6n-3) fatty acids have weight-reducing properties with physiological activity depending on their molecular structure - that is, as TAG or ethyl esters (EE). Aquaporins (AQP) are membrane protein channels recognised as important players in fat metabolism, but their differential expression in white adipose tissue (WAT) and brown adipose tissue (BAT), as well as their modulation by dietary n-3 long-chain PUFA (LCPUFA) such as EPA and DHA, has never been investigated. In this study, the transcriptional profiles of AQP3, AQP5, AQP7 and selected lipid markers of WAT (subcutaneous and visceral) and BAT (interscapular) from hamsters fed diets containing n-3 LCPUFA in different lipid structures such as fish oil (FO, rich in EPA and DHA in the TAG form) and FO-EE (rich in EPA and DHA in the EE form) were used and compared with linseed oil (LSO) as the reference group. A clear effect of fat depot was observed for AQP3 and leptin (LEP), with the lowest values of mRNA found in BAT relative to WAT. The opposite occurred for PPARα. AQP7 was affected by diet, with FO-fed hamsters having higher mRNA levels compared with LSO-fed hamsters. The relative gene expression of AQP5, adiponectin (ADIPO), GLUT4 and PPARγ was influenced by both fat tissue and diet. Taken together, our results revealed a differential expression profile of AQP and some markers of lipid metabolism in both WAT and BAT in response to feeding n-3 LCPUFA in two different structural formats: TAG v. EE.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Aquaporinas/metabolismo , Ácidos Graxos Ômega-3/química , Lipídeos/química , Adipócitos/metabolismo , Animais , Aquaporina 3/metabolismo , Aquaporina 5/metabolismo , Cricetinae , Dieta , Ácidos Graxos Insaturados/química , Óleos de Peixe , Expressão Gênica , Perfilação da Expressão Gênica , Transportador de Glucose Tipo 4/metabolismo , Leptina/metabolismo , Óleo de Semente do Linho/química , Metabolismo dos Lipídeos , Masculino , Mesocricetus , PPAR alfa/metabolismo , PPAR gama/metabolismo , Isoformas de Proteínas , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA