Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Phys Rev Lett ; 132(16): 160802, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701482

RESUMO

Recent developments have led to the possibility of embedding machine learning tools into experimental platforms to address key problems, including the characterization of the properties of quantum states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve resource-efficient and accurate characterization of the polarization state of a photon. The underlying reservoir dynamics through which such input state evolves is implemented using the coined quantum walk of high-dimensional photonic orbital angular momentum and performing projective measurements over a fixed basis. We demonstrate how the reconstruction of an unknown polarization state does not need a careful characterization of the measurement apparatus and is robust to experimental imperfections, thus representing a promising route for resource-economic state characterization.

2.
Opt Express ; 28(24): 35427-35437, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379657

RESUMO

Optical interrogation of tissues is broadly considered in biomedical applications. Nevertheless, light scattering by tissue limits the resolution and accuracy achieved when investigating sub-surface tissue features. Light carrying optical angular momentum or complex polarization profiles, offers different propagation characteristics through scattering media compared to light with unstructured beam profiles. Here we discuss the behaviour of structured light scattered by tissue-mimicking phantoms. We study the spatial and the polarization profile of the scattered modes as a function of a range of optical parameters of the phantoms, with varying scattering and absorption coefficients and of different lengths. These results show the non-trivial trade-off between the advantages of structured light profiles and mode broadening, stimulating further investigations in this direction.


Assuntos
Microscopia de Polarização/métodos , Imagens de Fantasmas , Espalhamento de Radiação , Biomimética , Luz , Modelos Biológicos
3.
Phys Rev Lett ; 124(16): 160401, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383956

RESUMO

Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods-namely, convolutional neural networks and principal component analysis-to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.

4.
Rep Prog Phys ; 82(1): 016001, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30421725

RESUMO

Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.

5.
Phys Rev Lett ; 122(6): 063602, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822072

RESUMO

Bosonic interference is a fundamental physical phenomenon, and it is believed to lie at the heart of quantum computational advantage. It is thus necessary to develop practical tools to witness its presence, both for a reliable assessment of a quantum source and for fundamental investigations. Here we describe how linear interferometers can be used to unambiguously witness genuine n-boson indistinguishability. The amount of violation of the proposed witnesses bounds the degree of multiboson indistinguishability, for which we also provide a novel intuitive model using set theory. We experimentally implement this test to bound the degree of three-photon indistinguishability in states we prepare using parametric down-conversion. Our approach results in a convenient tool for practical photonic applications, and may inspire further fundamental advances based on the operational framework we adopt.

6.
Phys Rev Lett ; 123(23): 230502, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868431

RESUMO

Introducing quantum sensors as a solution to real world problems demands reliability and controllability outside of laboratory conditions. Producers and operators ought to be assumed to have limited resources readily available for calibration, and yet, they should be able to trust the devices. Neural networks are almost ubiquitous for similar tasks for classical sensors: here we show the applications of this technique to calibrating a quantum photonic sensor. This is based on a set of training data, collected only relying on the available probe states, hence reducing overhead. We found that covering finely the parameter space is key to achieving uncertainties close to their ultimate level. This technique has the potential to become the standard approach to calibrate quantum sensors.

7.
Phys Rev Lett ; 122(2): 020503, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720314

RESUMO

The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.

8.
Phys Rev Lett ; 119(13): 130504, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341700

RESUMO

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

9.
Sci Adv ; 10(30): eado6244, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058770

RESUMO

A Bernoulli factory is a randomness manipulation routine that takes as input a Bernoulli random variable, outputting another Bernoulli variable whose bias is a function of the input bias. Recently proposed quantum-to-quantum Bernoulli factory schemes encode both input and output variables in qubit amplitudes. This primitive could be used as a subroutine for more complex quantum algorithms involving Bayesian inference and Monte Carlo methods. Here, we report an experimental implementation of a polarization-encoded photonic quantum-to-quantum Bernoulli factory. We present and test three interferometric setups implementing the basic operations of an algebraic field (inversion, multiplication, and addition), which, chained together, allow for the implementation of a generic quantum-to-quantum Bernoulli factory. These in-bulk schemes are validated using a quantum dot-based single-photon source featuring high brightness and indistinguishability, paired with a time-to-spatial demultiplexing setup to prepare input resources of up to three single-photon states.

10.
Phys Rev Lett ; 111(13): 130503, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116759

RESUMO

We perform a comprehensive set of experiments that characterize bosonic bunching of up to three photons in interferometers of up to 16 modes. Our experiments verify two rules that govern bosonic bunching. The first rule, obtained recently, predicts the average behavior of the bunching probability and is known as the bosonic birthday paradox. The second rule is new and establishes a n!-factor quantum enhancement for the probability that all n bosons bunch in a single output mode, with respect to the case of distinguishable bosons. In addition to its fundamental importance in phenomena such as Bose-Einstein condensation, bosonic bunching can be exploited in applications such as linear optical quantum computing and quantum-enhanced metrology.

11.
Nat Commun ; 14(1): 7743, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007542

RESUMO

Universal blind quantum computing allows users with minimal quantum resources to delegate a quantum computation to a remote quantum server, while keeping intrinsically hidden input, algorithm, and outcome. State-of-art experimental demonstrations of such a protocol have only involved one client. However, an increasing number of multi-party algorithms, e.g. federated machine learning, require the collaboration of multiple clients to carry out a given joint computation. In this work, we propose and experimentally demonstrate a lightweight multi-client blind quantum computation protocol based on a recently proposed linear quantum network configuration (Qline). Our protocol originality resides in three main strengths: scalability, since we eliminate the need for each client to have its own trusted source or measurement device, low-loss, by optimizing the orchestration of classical communication between each client and server through fast classical electronic control, and compatibility with distributed architectures while remaining intact even against correlated attacks of server nodes and malicious clients.

12.
Sci Adv ; 9(44): eadj4249, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922346

RESUMO

Quantum superposition of high-dimensional states enables both computational speed-up and security in cryptographic protocols. However, the exponential complexity of tomographic processes makes certification of these properties a challenging task. In this work, we experimentally certify coherence witnesses tailored for quantum systems of increasing dimension using pairwise overlap measurements enabled by a six-mode universal photonic processor fabricated with a femtosecond laser writing technology. In particular, we show the effectiveness of the proposed coherence and dimension witnesses for qudits of dimensions up to 5. We also demonstrate advantage in a quantum interrogation task and show it is fueled by quantum contextuality. Our experimental results testify to the efficiency of this approach for the certification of quantum properties in programmable integrated photonic platforms.

13.
Phys Rev Lett ; 108(23): 233602, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-23003955

RESUMO

The sensitivity in optical interferometry is strongly affected by losses during the signal propagation or at the detection stage. The optimal quantum states of the probing signals in the presence of loss were recently found. However, in many cases of practical interest, their associated accuracy is worse than the one obtainable without employing quantum resources (e.g., entanglement and squeezing) but neglecting the detector's loss. Here, we detail an experiment that can reach the latter even in the presence of imperfect detectors: it employs a phase-sensitive amplification of the signals after the phase sensing, before the detection. We experimentally demonstrated the feasibility of a phase estimation experiment able to reach its optimal working regime. Since our method uses coherent states as input signals, it is a practical technique that can be used for high-sensitivity interferometry and, in contrast to the optimal strategies, does not require one to have an exact characterization of the loss beforehand.


Assuntos
Interferometria/métodos , Modelos Teóricos , Teoria Quântica , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
14.
Sci Adv ; 7(12)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33741595

RESUMO

Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.

15.
Phys Rev Lett ; 105(11): 113602, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20867572

RESUMO

In the quantum sensing context most of the efforts to design novel quantum techniques of sensing have been constrained to idealized, noise-free scenarios, in which effects of environmental disturbances could be neglected. In this work, we propose to exploit optical parametric amplification to boost interferometry sensitivity in the presence of losses in a minimally invasive scenario. By performing the amplification process on the microscopic probe after the interaction with the sample, we can beat the losses' detrimental effect on the phase measurement which affects the single-photon state after its interaction with the sample, and thus improve the achievable sensitivity.

16.
Nat Commun ; 11(1): 2467, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424194

RESUMO

The launch of a satellite capable of distributing entanglement through long distances and the first loophole-free violation of Bell inequalities are milestones indicating a clear path for the establishment of quantum networks. However, nonlocality in networks with independent entanglement sources has only been experimentally verified in simple tripartite networks, via the violation of bilocality inequalities. Here, by using a scalable photonic platform, we implement star-shaped quantum networks consisting of up to five distant nodes and four independent entanglement sources. We exploit this platform to violate the chained n-locality inequality and thus witness, in a device-independent way, the emergence of nonlocal correlations among the nodes of the implemented networks. These results open new perspectives for quantum information processing applications in the relevant regime where the observed correlations are compatible with standard local hidden variable models but are non-classical if the independence of the sources is taken into account.

17.
Opt Express ; 16(22): 17609-15, 2008 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-18958041

RESUMO

We present the realization of a ultra fast shutter for optical fields, which allows to preserve a generic polarization state, based on a self-stabilized interferometer. It exhibits high (or low) transmittivity when turned on (or inactive), while the fidelity of the polarization state is high. The shutter is realized through two beam displacing prisms and a longitudinal Pockels cell. This can represent a useful tool for controlling light-atom interfaces in quantum information processing.

18.
Sci Bull (Beijing) ; 63(22): 1470-1478, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36658828

RESUMO

Particle indistinguishability is at the heart of quantum statistics that regulates fundamental phenomena such as the electronic band structure of solids, Bose-Einstein condensation and superconductivity. Moreover, it is necessary in practical applications such as linear optical quantum computation and simulation, in particular for Boson Sampling devices. It is thus crucial to develop tools to certify genuine multiphoton interference between multiple sources. Our approach employs the total variation distance to find those transformations that minimize the error probability in discriminating the behaviors of distinguishable and indistinguishable photons. In particular, we show that so-called Sylvester interferometers are near-optimal for this task. By using Bayesian tests and inference, we numerically show that Sylvester transformations largely outperform most Haar-random unitaries in terms of sample size required. Furthermore, we experimentally demonstrate the efficacy of the transformation using an efficient 3D integrated circuits in the single- and multiple-source cases. We then discuss the extension of this approach to a larger number of photons and modes. These results open the way to the application of Sylvester interferometers for optimal assessment of multiphoton interference experiments.

19.
Sci Rep ; 7(1): 15133, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123136

RESUMO

Photonic platforms represent a promising technology for the realization of several quantum communication protocols and for experiments of quantum simulation. Moreover, large-scale integrated interferometers have recently gained a relevant role in quantum computing, specifically with Boson Sampling devices and the race for quantum supremacy. Indeed, various linear optical schemes have been proposed for the implementation of unitary transformations, each one suitable for a specific task. Notwithstanding, so far a comprehensive analysis of the state of the art under broader and realistic conditions is still lacking. In the present work we fill this gap, providing in a unified framework a quantitative comparison of the three main photonic architectures, namely the ones with triangular and square designs and the so-called fast transformations. All layouts have been analyzed in presence of losses and imperfect control over the internal reflectivities and phases, showing that the square design outperforms the triangular scheme in most operational conditions. Our results represent a further step ahead towards the implementation of quantum information protocols on large-scale integrated photonic devices.

20.
Sci Rep ; 7(1): 14316, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29085033

RESUMO

Recent developments in integrated photonics technology are opening the way to the fabrication of complex linear optical interferometers. The application of this platform is ubiquitous in quantum information science, from quantum simulation to quantum metrology, including the quest for quantum supremacy via the boson sampling problem. Within these contexts, the capability to learn efficiently the unitary operation of the implemented interferometers becomes a crucial requirement. In this letter we develop a reconstruction algorithm based on a genetic approach, which can be adopted as a tool to characterize an unknown linear optical network. We report an experimental test of the described method by performing the reconstruction of a 7-mode interferometer implemented via the femtosecond laser writing technique. Further applications of genetic approaches can be found in other contexts, such as quantum metrology or learning unknown general Hamiltonian evolutions.


Assuntos
Ciência da Informação/tendências , Interferometria/instrumentação , Óptica e Fotônica/métodos , Algoritmos , Animais , Técnicas Genéticas , Humanos , Lasers , Aprendizagem , Luz , Fenômenos Ópticos , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA