Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 20(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33265470

RESUMO

Training deep learning networks is a difficult task due to computational complexity, and this is traditionally handled by simplifying network topology to enable parallel computation on graphical processing units (GPUs). However, the emergence of quantum devices allows reconsideration of complex topologies. We illustrate a particular network topology that can be trained to classify MNIST data (an image dataset of handwritten digits) and neutrino detection data using a restricted form of adiabatic quantum computation known as quantum annealing performed by a D-Wave processor. We provide a brief description of the hardware and how it solves Ising models, how we translate our data into the corresponding Ising models, and how we use available expanded topology options to explore potential performance improvements. Although we focus on the application of quantum annealing in this article, the work discussed here is just one of three approaches we explored as part of a larger project that considers alternative means for training deep learning networks. The other approaches involve using a high performance computing (HPC) environment to automatically find network topologies with good performance and using neuromorphic computing to find a low-power solution for training deep learning networks. Our results show that our quantum approach can find good network parameters in a reasonable time despite increased network topology complexity; that HPC can find good parameters for traditional, simplified network topologies; and that neuromorphic computers can use low power memristive hardware to represent complex topologies and parameters derived from other architecture choices.

2.
Sci Rep ; 12(1): 11691, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803971

RESUMO

We present a very general construction for quantum annealing protocols to solve Combinational Circuit Fault Diagnosis problems that restricts the evolution to the space of valid diagnoses. This is accomplished by using special local drivers that induce a transition graph on the space of feasible configurations that is regular and instance independent for each given circuit topology. Analysis of small instances shows that the energy gap has a generic form, and that the minimum gap occurs in the last third of the evolution. We used these features to construct an improved annealing schedule and benchmarked its performance through closed system simulations. We found that degeneracy can help the performance of quantum annealing, especially for instances with a higher number of faults in their minimum fault diagnosis. This contrasts with the performance of classical approaches based on brute force search that are used in industry for large scale circuits.

3.
Sci Rep ; 4: 5703, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25029660

RESUMO

Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.

4.
Nat Commun ; 4: 2067, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23811779

RESUMO

Quantum annealing is a general strategy for solving difficult optimization problems with the aid of quantum adiabatic evolution. Both analytical and numerical evidence suggests that under idealized, closed system conditions, quantum annealing can outperform classical thermalization-based algorithms such as simulated annealing. Current engineered quantum annealing devices have a decoherence timescale which is orders of magnitude shorter than the adiabatic evolution time. Do they effectively perform classical thermalization when coupled to a decohering thermal environment? Here we present an experimental signature which is consistent with quantum annealing, and at the same time inconsistent with classical thermalization. Our experiment uses groups of eight superconducting flux qubits with programmable spin-spin couplings, embedded on a commercially available chip with >100 functional qubits. This suggests that programmable quantum devices, scalable with current superconducting technology, implement quantum annealing with a surprising robustness against noise and imperfections.

6.
Phys Rev Lett ; 88(18): 187904, 2002 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12005725

RESUMO

We show how to design families of operational criteria that distinguish entangled from separable quantum states. The simplest of these tests corresponds to the well-known Peres-Horodecki positive partial transpose (PPT) criterion, and the more complicated tests are strictly stronger. The new criteria are tractable due to powerful computational and theoretical methods for the class of convex optimization problems known as semidefinite programs. We successfully applied the results to many low-dimensional states from the literature where the PPT test fails. As a by-product of the criteria, we provide an explicit construction of the corresponding entanglement witnesses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA